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1. Induction and Inductance 

In fourth lecture we discussed the fact that a current produces a magnetic field. That 

fact came as a surprise to the scientists who discovered the effect. Perhaps even 

more surprising was the discovery of the reverse effect: A magnetic field can 

produce an electric field that can drive a current. This link between a magnetic field 

and the electric field it produces (induces) is now called Faraday’s law of induction.  

The observations by Michael Faraday and other scientists that led to this law were 

at first just basic science. Today, however, applications of that basic science are 

almost everywhere. For example, induction is the basis of the electric guitars that 

revolutionized early rock and still drive heavy metal and punk today. It is also the 

basis of the electric generators that power cities and transportation lines and of the 

huge induction furnaces that are commonplace in foundries where large amounts of 

metal must be melted rapidly. Before we get to applications like the electric guitar, 

we must examine two simple experiments about Faraday’s law of induction. 

2. Two Experiments 

Let us examine two simple experiments to prepare for our discussion of Faraday’s 

law of induction. 

First Experiment. Figure (1) shows a conducting loop connected to a sensitive 

ammeter. Because there is no battery or other source of electromotive force (emf) 

included, there is no current in the circuit. However, if we move a bar magnet toward 

the loop, a current suddenly appears in the circuit. The current disappears when the 

magnet stops. If we then move the magnet away, a current again suddenly appears, 

but now in the opposite direction. If we experimented for a while, we would discover 

the following: 

1. A current appears only if there is relative motion between the loop and the magnet 

(one must move relative to the other); the current disappears when the relative 

motion between them ceases. 

2. Faster motion produces a greater current. 



3. If moving the magnet’s north pole toward the loop causes, say, clockwise current, 

then moving the north pole away causes counterclockwise current. Moving the 

south pole toward or away from the loop also causes currents, but in the reversed 

directions.  

 

Figure (1): An ammeter registers a current in the wire loop when the magnet is 

moving with respect to the loop. 

 

The current produced in the loop is called an induced current; the work done per 

unit charge to produce that current (to move the conduction electrons that constitute 

the current) is called an induced emf; and the process of producing the current and 

emf is called induction. 

Second Experiment. For this experiment we use the apparatus of Figure (2), with 

the two conducting loops close to each other but not touching. If we close switch S, 

to turn on a current in the right-hand loop, the meter suddenly and briefly registers 

a current—an induced current—in the left-hand loop. If we then open the switch, 

another sudden and brief induced current appears in the left-hand loop, but in the 

opposite direction. We get an induced current (and thus an induced emf) only when 

the current in the right-hand loop is changing (either turning on or turning off) and 

not when it is constant (even if it is large). 



 

Figure (2): An ammeter registers a current in the left-hand wire loop just as switch 

S is closed (to turn on the current in the right hand wire loop) or opened (to turn off 

the current in the right-hand loop). No motion of the coils is involved. 

 

The induced emf and induced current in these experiments are apparently caused 

when something changes—but what is that “something”? Faraday knew. 

3. Faraday’s Law of Induction 

Faraday realized that an emf and a current can be induced in a loop, as in our two 

experiments, by changing the amount of magnetic field passing through the loop. 

He further realized that the “amount of magnetic field” can be visualized in terms 

of the magnetic field lines passing through the loop. Faraday’s law of induction, 

stated in terms of our experiments, is this: 

An emf is induced in the loop at the left in Figure (1&2) when the number of 

magnetic field lines that pass through the loop is changing. 

The actual number of field lines passing through the loop does not matter; the  values 

of the induced emf and induced current are determined by the rate at which that 

number changes. 

In our first experiment Figure (1), the magnetic field lines spread out from the north 

pole of the magnet. Thus, as we move the north pole closer to the loop, the number 

of field lines passing through the loop increases. That increase apparently causes 

conduction electrons in the loop to move (the induced current) and provides energy 

(the induced emf) for their motion. When the magnet stops moving, the number of 



field lines through the loop no longer changes and the induced current and induced 

emf disappear. 

In our second experiment Figure (2), when the switch is open (no current), there are 

no field lines. However, when we turn on the current in the right hand loop, the 

increasing current builds up a magnetic field around that loop and at the left-hand 

loop. While the field builds, the number of magnetic field lines through the left-

hand loop increases. As in the first experiment, the increase in field lines  through 

that loop apparently induces a current and an emf there. When the current in the 

right-hand loop reaches a final, steady value, the number of field lines through the 

left-hand loop no longer changes, and the induced current and induced emf 

disappear. 

A Quantitative Treatment 

To put Faraday’s law to work, we need a way to calculate the amount of magnetic 

field that passes through a loop. In a similar situation, we needed to calculate the 

amount of electric field that passes through a surface. There we  defined an electric 

flux 𝐸 = ∫ �⃗� . 𝑑𝐴 . Here we define a magnetic flux: Suppose a loop enclosing an 

area A is placed in a magnetic field �⃗� . Then the magnetic flux through the loop is: 

𝐵 = ∫�⃗� . 𝑑𝐴    (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥  𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑟𝑒𝑎 𝐴)           (1) 

As in previous chapter, 𝑑𝐴  is a vector of magnitude dA that is perpendicular to a 

differential area dA. As with electric flux, we want the component of the field that 

pierces the surface (not skims along it). The dot product of the field and the area 

vector automatically gives us that piercing component. 

Special Case. As a special case of Equation (1), suppose that the loop lies in a plane 

and that the magnetic field is perpendicular to the plane of the loop. Then we can 

write the dot product in Equation (1) as B dA cos 0° = B dA. If the magnetic field is 

also uniform, then B can be brought out in front of the integral sign. The remaining 

∫ 𝑑𝐴 then gives just the area A of the loop. Thus, Equation (1) reduces to: 



𝐵 = 𝐵𝐴  (�⃗� ⊥ 𝑎𝑟𝑒𝑎 𝐴, �⃗�   𝑢𝑛𝑖𝑓𝑜𝑟𝑚)              (2) 

Unit. From Equation (1) and (2), we see that the SI unit for magnetic flux is the 

tesla–square meter, which is called the weber (abbreviated Wb): 

1 weber = 1 Wb = 1 T.m2           (3) 

Faraday’s Law. With the notion of magnetic flux, we can state Faraday’s law 

in a more quantitative and useful way: 

The magnitude of the emf  induced in a conducting loop is equal to the rate at 

which the magnetic flux 𝑩 through that loop changes with time. 

As you will see below, the induced emf  tends to oppose the flux change, so 

Faraday’s law is formally written as: 

 = −
𝑑𝐵

𝑑𝑡
  (𝐹𝑎𝑟𝑎𝑑𝑎𝑦 ′𝑠𝑙𝑎𝑤)           (4) 

with the minus sign indicating that opposition. We often neglect the minus sign in 

Equation (4), seeking only the magnitude of the induced emf. 

If we change the magnetic flux through a coil of N turns, an induced emf appears in 

every turn and the total emf induced in the coil is the sum of these 

individual induced emfs. If the coil is tightly wound (closely packed), so that 

the same magnetic flux 𝐵 passes through all the turns, the total emf induced in the 

coil is: 

 = −𝑁
𝑑𝐵

𝑑𝑡
 (𝑐𝑜𝑖𝑙  𝑜𝑓 𝑁 𝑡𝑢𝑟𝑛𝑠)              (5) 

Here are the general means by which we can change the magnetic flux through a 

coil: 

1. Change the magnitude B of the magnetic field within the coil. 

2. Change either the total area of the coil or the portion of that area that lies  within 

the magnetic field (for example, by expanding the coil or sliding it into or out of the 

field). 



3.Change the angle between the direction of the magnetic field �⃗�  and the plane of 

the coil (for example, by rotating the coil so that field �⃗�  is first perpendicular to the 

plane of the coil and then is along that plane). 

Example: 

 



 

 

 



4. Lenz’s Law 

Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz devised 

a rule for determining the direction of an induced current in a loop: 

An induced current has a direction such that the magnetic field due to the current 

opposes the change in the magnetic flux that induces the current. 

Furthermore, the direction of an induced emf is that of the induced current. The key 

word in Lenz’s law is “opposition.” Let’s apply the law to the motion of the north 

pole toward the conducting loop in Figure (3). 

 

Figure (3): Lenz’s law at work. As the magnet is moved toward the loop, a current is 

induced in the loop. The current produces its own magnetic field, with magnetic 

dipole moment oriented so as to oppose the motion of the magnet. Thus, the induced 

current must be counterclockwise as shown. 

 

1. Opposition to Pole Movement. The approach of the magnet’s north pole in 

Figure (3) increases the magnetic flux through the loop and thereby induces a 

current in the loop. From Figure (4), we know that the loop then acts as a magnetic 

dipole with a south pole and a north pole, and that its magnetic dipole moment 𝜇  is 

directed from south to north. To oppose the magnetic flux increase being caused by 

the approaching magnet, the loop’s north pole (and thus 𝜇 ) must face toward the 



approaching north pole so as to repel it Figure (3). Then the curled – straight right-

hand rule for 𝜇  (Figure (4)) tells us that the current induced in the loop must be 

counterclockwise in Figure (3). 

If we next pull the magnet away from the loop, a current will again be induced in 

the loop. Now, however, the loop will have a south pole facing the retreating north 

pole of the magnet, so as to oppose the retreat. Thus, the induced current will be 

clockwise. 

 

Figure (4): A current loop produces a magnetic field like that of a bar magnet and 

thus has associated north and south poles. The magnetic dipole moment of the loop, 

its direction given by a curled–straight right-hand rule, points from the south pole 

to the north pole, in the direction of the field B within the loop. 

2. Opposition to Flux Change. In Figure (3), with the magnet initially distant, no 

magnetic flux passes through the loop. As the north pole of the magnet then nears 

the loop with its magnetic field  �⃗�  directed downward, the flux through the loop 

increases. To oppose this increase in flux, the induced current i must set up its own 

field �⃗� 𝑖𝑛𝑑  directed upward inside the loop, as shown in Figure (5-a); then the 

upward flux of field �⃗� 𝑖𝑛𝑑  opposes the increasing downward flux of field  �⃗� . The 

curled–straight right-hand rule of Figure (4) then tells us that I must be 

counterclockwise in Figure (5-a). 

 



 

Figure (5): The direction of the current i induced in a loop is such that the current’s 

magnetic field �⃗⃗� 𝒊𝒏𝒅 opposes the change in the magnetic field �⃗⃗�  inducing i. The field 

�⃗⃗� 𝒊𝒏𝒅 is always directed opposite an increasing field �⃗⃗� (𝒂,𝒄) and in the same direction 

as a decreasing field �⃗⃗� (𝒃,𝒅). The curled–straight right-hand rule gives the direction 

of the induced current based on the direction of the induced field. 

Heads Up. The flux of �⃗� 𝑖𝑛𝑑   always opposes the change in the flux of  �⃗� , but �⃗� 𝑖𝑛𝑑   

is not always opposite . For example, if we next pull the magnet away from the loop 

in Figure (3), the magnet’s flux 𝐵 is still downward through the loop, but it is now 

decreasing. The flux of �⃗� 𝑖𝑛𝑑   must now be downward inside the loop, to oppose that 

decrease Figure (5-b). Thus, �⃗� 𝑖𝑛𝑑   and  �⃗�   are now in the same direction. In Figure 

(5-c & d), the south pole of the magnet approaches and retreats from the loop, again 

with opposition to change. 

 



 

 

 

 


