

المستقبل الجامعـة

قسم هندسة تقنيات
الأجهـزة الطبيــــة

رامي قيس ماللك	اسم التدريسي
تقتيات رقميةّ	اسم المـادة
Binary Codes	عنوان المحاضرة
4	رقم المحاضرة
rami.qays@mustaqbal-college.edu.iq	الايميل الجامعي للتبريسي

Class: $2^{\text {nd }}$
Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

BINARY CODES

INTRODUCTION:

This lecture describes various popular Binary Code formats. In the coding, when numbers, letters or words are represented by a specific group of symbols, it is said that the number, letter or word is being encoded. The group of symbols is called as a code. The digital data is represented, stored and transmitted as group of binary bits. This group is also called as binary code. The binary code is represented by the number as well as alphanumeric letter

ADVANTAGES OF BINARY CODE:

\checkmark Binary codes are suitable for the computer applications.
\checkmark Binary codes are suitable for the digital communications.
\checkmark Since only $0 \& 1$ are being used, implementation becomes easy.

1.BINARY CODED DECIMAL (BCD) CODE:

In this code each decimal digit is represented by a 4 -bit binary number. BCD is a way to express each of the decimal digits with a binary code. In the BCD, with four bits we can represent sixteen numbers (0000 to 1111).

Note: But in BCD code only first ten of these are used (0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD..

Class: $2^{\text {nd }}$
Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

DECIMAL	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

2: EXCESS-3 CODE

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal numbers. The Excess-3 code words are derived from the 8421 BCD code words adding $(0011)_{2}$ or $(3)_{10}$ to each code word in 8421 . The excess- 3 codes are obtained as follows:

Example:

Decimal	BCD				Excess-3$B C D+0011$			
	8	4	2	1				
0	0	0	0	0		0	1	
1	0	0	0	1		1	0	0
2	0	0	1	0		1	0	1
3	0	0	1	1		1	1	0
4	0	1	0	0		1	1	
5	0	1	0	1		0	0	0
6	0	1	1	0		0	0	1
7	0	1	1	1		0	1	0
8	1	0	0	0		0	1	
9	1	0	0	1		1	0	

Class: $2^{\text {nd }}$

Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

3. Gray Code:

It has a very special feature that has only one bit will change, each time the decimal number is incremented as shown in fig. As only one bit changes at a time, the gray code is called as a unit distance code. The gray code is a cyclic code.

Decimal	BCD				Gray			
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7		1	1	1	0	1	0	0
8		0	0	0	1	1	0	0
9		0	0	1	1	1	0	1

CODES CONVERSION:

This section describes conversion of various digital code formats to one another. there are many methods or techniques which can be used to convert code from one format to another. We'll demonstrate here the following:

Class: $2^{\text {nd }}$

Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $: 4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

- Binary to BCD Conversion
- BCD to Binary Conversion
- BCD to Excess-3
- Excess-3 to BCD
- Binary to Gray
- Gary to binary

1. BINARY TO BCD CONVERSION:

Step 1 -- Convert the binary number to decimal.
Step 2 -- Convert decimal number to BCD.
Example :Convert $(11101)_{2}$ to BCD .
Step 1 - Convert to Decimal
Binary Number: 11101_{2}
Calculating Decimal Equivalent:
Step 1: $11101_{2}=((1 \times 16)+(1 \times 8)+(1 \times 4)+(0 \times 2)+(1 \times 1))_{10}$

$$
\begin{aligned}
& 11101_{2}=(16+8+4+0+1)_{10} \\
& 11101_{2}=29_{10}
\end{aligned}
$$

Step 2 - Convert to BCD

Class: $2^{\text {nd }}$
Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

Decimal Number: 29_{10}
Calculating BCD Equivalent: Convert each digit into groups of four binary digits equivalent.

Steps	Decimal	Number Conversion
Step 1	29_{10}	$0010_{2} 1001_{2}$
Step 2	29_{10}	00101001_{BCD}
Result $=(11101)_{2}=(00101001)_{\text {BCD }}$		

2. BCD TO BINARY CONVERSION:

Step 1 -- Convert the BCD number to decimal.
Step 2 -- Convert decimal to binary.
Example:
Convert (00101001$)_{\mathrm{BCD}}$ to Binary.
Step 1 - Convert to Decimal: Calculating Decimal Equivalent: Convert each four digit into a group and get decimal equivalent or each group.

Class: $2^{\text {nd }}$
Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $: 4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

Step $1(00101001)_{B C D}=0010_{2} 1001_{2}$
$(00101001)_{\mathrm{BCD}}=29_{10}$
Step 2 - Convert to Binary: Used long division method for decimal to binary conversion.

29/2 $14 \quad 1$
$14 / 270$
$7 / 231$
$3 / 211$
$1 / 20 \quad 1$
Decimal Number: $29_{10}=$ Binary Number: 11101_{2}
Result : $(00101001)_{\mathrm{BCD}}=(11101)_{2}$

3. BCD TO EXCESS-3:

Step 1 -- Convert BCD to decimal.
Step 2 -- Add (3) $)_{10}$ to this decimal number.
Step 3 -- Convert into binary to get excess-3 code
Example:
Convert (1001) ${ }_{\mathrm{BCD}}$ to Excess-3.
Step 1 - Convert to Decimal

Class: $2^{\text {nd }}$
Subject: Digital Techniques
Lecturer: Rami Qays Malik
Lecture $4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

$(1001)_{\text {BCD }}=9_{10}$
Step 2 - Add 3 to Decimal
$(9)_{10}+(3)_{10}=(12)_{10}$
Step 3 - Convert to Excess-3
$(12)_{10}=(1100)_{2}$
Result
$(1001)_{\mathrm{BCD}}=(1100) \mathrm{XS}-3$

4. EXCESS-3 TO BCD CONVERSION:

Step 1 -- Subtract $(0011)_{2}$ from each 4 bit of excess- 3 digit to obtain the corresponding BCD code.

Example
convert (10011010) $)_{\mathrm{xS}-3}$ to BCD .
Given XS-3 number = 10011010
Subtract $(0011)_{2}=00110011$
$(10011010)_{\mathrm{XS}-3}=(01100111)_{\mathrm{BCD}}$

5. Gray To Binary Conversion:

Step1: The MSB in the left is the MSB in binary number. In other word they are The same.

Step2: Add the first digit of the binary number to the second digit in Gary code, the carry is ignored, in other word, take XOR operation between them .

Class: $2^{\text {nd }}$

Subject: Digital Techniques

Lecturer: Rami Qays Malik
Lecture : $4^{\text {th }}-$ Binary Codes

E-mail : rami.qays@mustaqbal-college.edu.iq

Example: Convert the Gary code 11011 to binary number?

Then $(11011)_{G}=(10010)_{2}$

6. Binary To Gray Conversion:

Step1: The MSB digit in Gary code is the same as corresponding digit in the binary number.

Step2: going from left to right, add each adjacent pair of binary digit to get the next Gray digits, regardless carries .

Example: Convert the following binary number 100110 to Gray code?

Binary Number $\rightarrow 10$ O 110
 Gray Code $\quad \rightarrow 110101$

Then $(100110)_{2}=(110101)_{G}$
EXERCISE :
1- convert the BCD code $(1001010100000100)_{B C D}$ to decimal number
2 - convert the gray code 11011 to binary number?

