Al-Mustaqbal University College Department of Computer Engineering Techniques

Information Theory and coding
 Fourth stage

Lecture 3

Conditional Probability and Venn's Diagram

Conditional Probability:

It is happened when there are dependent events. We have to use the symbol "|" to mean "given":

- $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ means "Event B given Event A has occurred".
- $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is also called the "Conditional Probability" of B given A has occurred.
- And we write it as:

$$
P(A \mid B)=\frac{\text { number of elements of } A \text { and } B}{\text { number of elements of } B}
$$

Or

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Where $\mathrm{P}(\mathrm{B})>0$
Example: A box contains 5 green pencils and 7 yellow pencils. Two pencils are chosen at random from the box without replacement. What is the probability they are different colors?

Solution: Using a tree diagram:

Example: Find the conditional prob. For Toss a fair coin 3 times $: 1-$ What is the probability of 3 heads? 2- What is the probability of head?

Solution:

S = \{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT $\}$
$\mathrm{A}=\{\mathrm{HHH}\}$
$\mathrm{B}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}\}$

The conditional probability of A given B is written $P(A \mid B)$ and is defined

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

We have $\quad \mathrm{P}(\mathrm{A})=1 / 8$

$$
P(B)=4 / 8
$$

$$
P(A \cap B)=1 / 8
$$

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{1 / 8}{4 / 8}=\frac{1}{4}
$$

Venn's Diagram

A Venn diagram is a diagram that shows all possible logical relations between a finite collections of different sets. These diagrams depict elements as points in the plane, and sets as regions inside closed curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set. The points inside a curve labelled S represent elements of the set S, while points outside the boundary represent elements not in the set S. Fig. 5 shows the set $A=\{1,2,3\}, B=\{4,5\}$ and $U=$ \{1,2,3,4,5,6\}.

Example:

From the adjoining Venn diagram, find the following sets.
(i) A
(ii) B
(iii) ξ
(iv) A^{\prime}
(v) B^{\prime}

(vi) C^{\prime}
(vii) C - A
(viii) B - C
(ix) $A-B$
(x) $A \cup B$
(xi) $B \cup C$
(xii) $A \cap C$
(xiii) $B \cap C$
(xiv) $(B \cup C)^{\prime}$
$(x v)(A \cap B)^{\prime}$
(xvi) $(A \cup B) \cap C$

Answers for examples on Venn diagram are given below:
(i) \mathbf{A}
$=\{1,3,4,5\}$
(ii) \mathbf{B}
$=\{4,5,6,2\}$
(iii) $\boldsymbol{\xi}$
$=\{1,2,3,4,5,6,7,8,9,10\}$
(iv) \mathbf{A}^{\prime}
$=\{2,6,7,8,9,10\}$ all elements of universal set leaving the elements of set A.
(v) \mathbf{B}^{\prime}
$=\{1,3,7,8,9,10\}$ all elements of universal set leaving the elements of set B.
(vi) $\mathbf{C}^{\prime}=$ To find
$C=\{1,5,6,7,10\}$

Therefore, $\mathrm{C}^{\prime}=\{2,3,4,8,9\} \quad$ all elements of universal set leaving the elements of set C .
(vii) $\mathbf{C}-\mathbf{A}$

Here $C=\{1,5,6,7,10\}$
$A=\{1,3,4,5\}$
then $C-A=\{6,7,10\} \quad$ excluding all elements of A from C.
(viii) B-C

Here $B=\{4,5,6,2\}$
$C=\{1,5,6,7,10\}$
$B-C=\{4,2\} \quad$ excluding all elements of C from B.
(ix) $\mathbf{B}-\mathbf{A}$

Here $B=\{4,5,2\}$
$A=\{1,3,4,5\}$
$B-A=\{6,2\} \quad$ excluding all elements of A from C.
(x) A U B

Here $A=\{1,3,4,5\}$
$B=(4,5,6,2\}$
$A \cup B=\{1,2,3,4,5,6\}$
(xi) $\mathbf{B} \cup \mathbf{C}$

Here $B=\{4,5,6,2\}$
$C=\{1,5,6,7,10\}$
$B \cup C=\{1,2,4,5,6,7,10\}$
(xii) (B U C)'

Since, $B \cup C=\{1,2,4,5,6,7,10\}$
Therefore, $(B \cup C)^{\prime}=\{3,8,9\}$
(xiii) $(\mathbf{A} \cap \mathbf{B})^{\prime}$
$A=\{1,3,4,5\}$
$B=\{4,5,6,2\}$
$(A \cap B)=\{4,5\}$
$(A \cap B)^{\prime}=\{1,2,3,6,7,8,9,10\}$
(xiv) ($A \cup B$) $\cap \mathbf{C}$
$A=\{1,2,3,4\}$
$B=\{4,5,6,2\}$
$C=\{1,5,6,7,10\}$
$A \cup B=\{1,2,3,4,5,6\}$
$(A \cup B) \cap C=\{1,5,6\}$
(xv) $\mathbf{A} \cap(B \cap C)$
$A=\{1,3,4,5\}$
$B=\{4,5,6,2\}$
$C=\{1,5,6,7,10\}$
$B \cap C=\{5,6\}$
$A \cap(B \cap C)=\{5\}$

