

ALMUSTAQBAL UNIVERSITY COLLEGE

DEPARTMENT OF BUILDING & CONSTRUCTION ENGINEERING TECHNOLOGY

ANALYSIS & DESIGN OF REINFORCED CONCRETE STRUCTURES (II)

SLAB THICKNESS II

Dr. MOHAMMED ZUHEAR ALMULALI

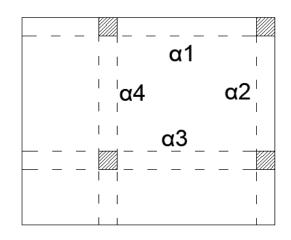
SLAB WITH BEAMS IN DETAIL:

$$\alpha_{fm} = \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}{4}$$

Where:

 $lpha_{\mathit{fm}}$: average value of lpha for all beams on the edge of the panel

$$\alpha = \frac{E_{c\ beam}.\,I_{beam}}{E_{c\ slab}\,.\,I_{slab}} = \frac{I_{beam}}{I_{slab}}$$



DETERMINING I_{BEAM}

$$I_{BEAM} = f.\frac{b_w h^3}{12}$$

EDGE BEAM DETAILS:

$$b_f = b_w + a$$

 $a = \min val. [4t \ or \max(h1, h2)]$

$$I_{b} = f \cdot \frac{b_{w} \cdot h^{3}}{12}$$

$$f = 1 + 0.2 \frac{b_{f}}{b_{w}}$$

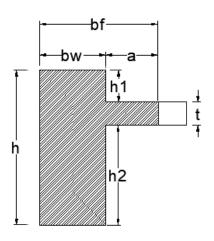
$$0.2 \le \frac{t}{h} \le 0.5$$

$$2 \le \frac{b_{f}}{b_{w}} \le 4$$

$$0.2 \le \frac{t}{h} \le 0.5$$

$$2 \le \frac{b_f}{b_w} \le 4$$

Or approximately f = 1.5



INTERIOR BEAM DETAILS:

 $a = \min val. [4t \ or \max(h1, h2)]$

$$bf = 2a + bw$$

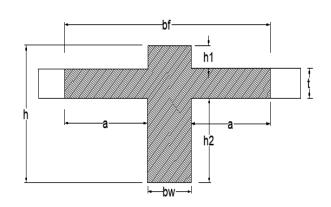
$$f = 1 + 0.2 \frac{b_f}{b_w}$$

$$0.2 \le \frac{t}{h} \le 0.5$$

$$2 \le \frac{b_f}{b_w} \le 4$$

$$I_b = f \cdot \frac{b_w \cdot h^3}{12}$$

Or approximately f = 2.0



Example Six: find $a \& b_f$.

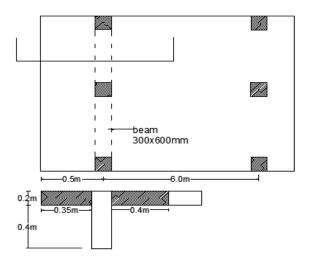
Solution:

$$a = \min[4t \ or \ max. (h_1, h_2)$$

= $\min[4 \times 0.2, max. (0.4m)]$

$$\therefore a = 0.4m$$

$$b_f = 0.35 + 0.3 + 0.4 = 1.05m$$

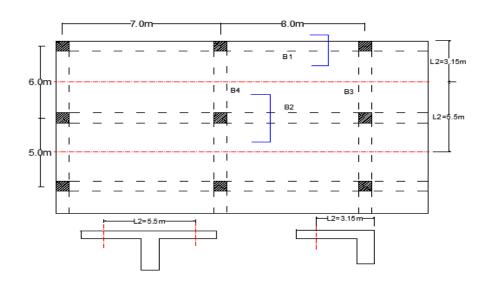


DETERMINING I_{SLAB}

$$I_{SLAB} = \frac{l_2 \cdot t^3}{12}$$

Where:

 $l_2 = length\ of\ span\ perpindicular\ to\ the\ beam's\ direction$



1.2m

 In the case of a cantilever parallel to the outside beam

Note:

• If a panel has one edge without a beam, the (α) for that beam is (0).

$$\therefore \alpha_{fm} = \frac{\alpha_1 + \alpha_2 + \alpha_3 + 0}{4}$$

- In the case of an exterior panel with an exterior edge that has no beam or a weak beam $\alpha \le 0.8$, it is a must to increase the determined slab thickness by 10%.
- If slab thickness was given and it is required to check the slab thickness

$$slab\ thickness_{calculated} \leq slab\ thickness_{given}$$

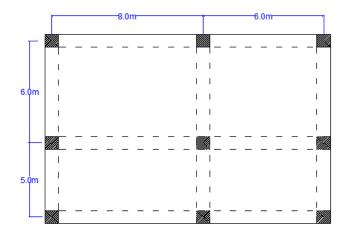
• the largest panel area should be considered, and the largest span should be taken when calculating l_n .

Example Seven: find l_n , s_n for the slab shown in the figure. All column sizes are $(300 \times 300mm)$

Solution:

$$l_n = 8000 - 300 = 7700mm$$

$$s_n = 6000 - 300 = 5700mm$$

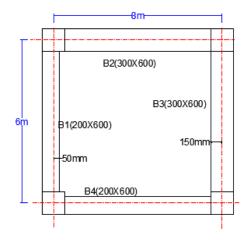


Example Eight: find l_n , s_n for the slab shown in the figure. All column sizes are $(300 \times 300mm)$

Solution:

$$l_n = 8000 - 150 - 50 = 7800mm$$

$$s_n = 6000 - 150 - 50 = 5800mm$$



Example Nine: Find slab thickness. Use $f_y = 400 MPa$, Beam size (300x600) mm and column size (300x300) mm.

Solution:

$$\alpha_{fm} = \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}{4}$$
$$= \frac{2.5 + 8 + 4 + 0}{4} = 3.625$$

Since the slab has beams \rightarrow we use table 8.3.1.2

Since the panel is an exterior panel and the exterior edge has no beam, then increase the thickness by 10%.

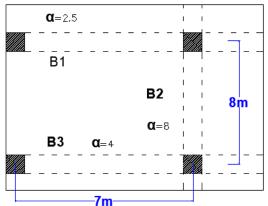


Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

$\alpha_{fm}^{[1]}$	1		
$\alpha_{fm} \leq 0.2$		8.3.1.1 applies	
$0.2 < \alpha_{fm} \le 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 5\beta \left(\alpha_{jm} - 0.2\right)}$	(b) ^{[2],[3]}
		125	(c)
$\alpha_{fm} \ge 2.0$	Greater of:	$36+5\beta\left(\alpha_{fm}-0.2\right)$	(d) ^{[2],[3]}
		90	(e)

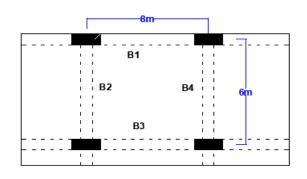
lated in accordance with 8.10.2.7.

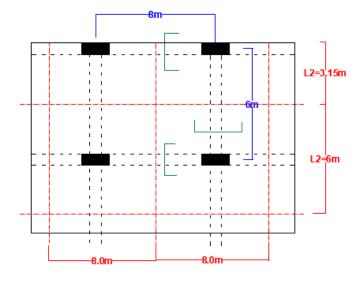
 $^{[2]}\ell_n$ is the clear span in the long direction, measured face-to-face of beams (mm)

[3] is the ratio of clear spans in long to short directions of slab

$$h = 1.1 \times \frac{l_n(0.8 + \frac{f_y}{1400})}{36 + 9(1.15)} = 1.1 \times \frac{7700(0.8 + \frac{400}{1400})}{36 + 9(1.15)} = 0.198m > 90mm \quad ok$$

Example Ten: check the slab thickness. All columns are of (300x600mm), all beams are (300x700mm), slab thickness (h = 200mm), and $f_v = 350MPa$.





Solution:

Find α for the beams:

B1:

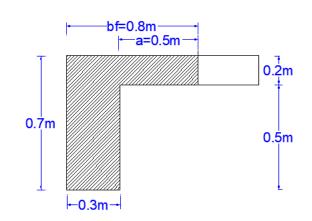
1:

$$a = min. [4t \text{ or } h_2] = min. [4 \times 0.2 = 0.8 \text{ or } 0.5]$$

$$\therefore a = 0.5m$$

$$\frac{b_f}{b_w} = \frac{0.5 + 0.3}{0.3} = 2.667 \qquad 2 \le \frac{b_f}{b_w} \le 4$$

$$\frac{t}{h_{beam}} = \frac{0.2}{0.7} = 0.29 \qquad 0.2 < \frac{t}{h_{beam}} < 0.5$$



$$f = 1 + 0.2 \frac{b_f}{b_w} = 1 + 0.2 \times 2.667 = 1.53$$

$$I_{beam} = f \cdot \frac{bh^3}{12} = 1.53 \times \frac{0.3(0.7)^3}{12} = 0.01315m^4$$

$$I_{slab} = \frac{l_2 \cdot t^3}{12} = \frac{3.15(0.2)^3}{12} = 0.0021m^4$$

$$\therefore \alpha_{B1} = \frac{0.0135}{0.0021} = 6.26 > 0.8 \text{ ok.}$$

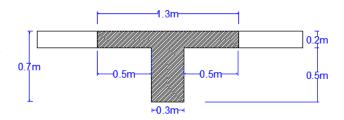
B2:

$$\frac{b_f}{b_w}=\frac{0.5+0.3+0.5}{0.3}=4.3>4$$
 although the condition is not satisfied, however, the difference isn't large.

$$\frac{t}{h_{beam}} = \frac{0.2}{0.7} = 0.29 \to 0.2 < \frac{t}{h_{beam}} < 0.5 \quad ok$$

$$f = 1 + 0.2 \times 4.3 = 1.87$$

$$I_{beam} = f. \frac{bh^3}{12} = 1.87 \times \frac{0.3(0.7)^3}{12} = 0.016m^4$$

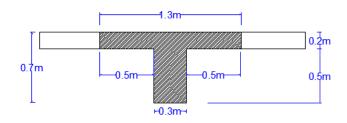


$$I_{slab} = \frac{l_2 \cdot t^3}{12} = \frac{8(0.2)^3}{12} = 0.00533m^4$$

$$\alpha_{B2} = \frac{0.016}{0.0053} = 3 > 0.8$$
 ok.

B3:

$$\begin{split} I_{beam} &= I_{B2} = 0.016m^4 \\ I_{slab} &= \frac{l_2 \cdot t^3}{12} = \frac{6(0.2)^3}{12} = 0.4m^4 \\ \alpha_{B3} &= \frac{0.016}{0.4} = 4.01 \end{split}$$



B4:

$$\begin{split} \alpha_{B4} &= \alpha_{B2} = 3.0 \\ \therefore \, \alpha_{fm} &= \frac{6.26 + 3 + 4.01 + 3}{4} = 4.07 \, > 2.0 \end{split}$$

Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

a _{fm} [1]	Minimum h, mm 8.3.1.1 applies		
$\alpha_{fm} \leq 0.2$			(a)
$0.2 \le \alpha_{\rm fm} \le 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 5\beta \left(\alpha_{jm} - 0.2\right)}$	(P)[5]1[3]
	36.7	125	(c)
$\alpha_{\text{fin}} \geq 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 9\beta}$	(q) _{[5]1[3]}
		90	(e)

lated in accordance with 8.10.2.7.

 $^{[3]}\beta$ is the ratio of clear spans in long to short directions of slab

$$l_n = 8000 - 300 = 7700mm$$
$$\beta = \frac{7700}{5700} = 1.35$$

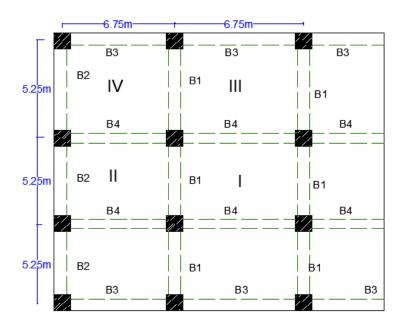
$$h = \frac{7700(0.8 + \frac{400}{1400})}{36 + 9(1.35)} = 173.6mm > 90mm \quad ok.$$

$$h_{calculated} = 180mm < h_{given} = 200mm$$

 \therefore slab thickness is okay.

 $[\]Box l_n$ is the clear span in the long direction, measured face-to-face of beams (mm)

Example Eleven: estimate the slab thickness for the following slab beam given. Dimensions of all beams are $(350 \times 650mm)$, and all column sizes $(450 \times 450mm)$. $f'_c = 30MPa$, $f'_b = 420MPa$, and use $f_{L\ beam} = 1.5$ and $f_{T\ beam} = 2.0$. Assume slab thickness =150mm.



$$\alpha_{B1} = \frac{(2 \times 350 \times 650^{3})}{12} / \frac{6750 \times 150^{3}}{12} = 8.43$$

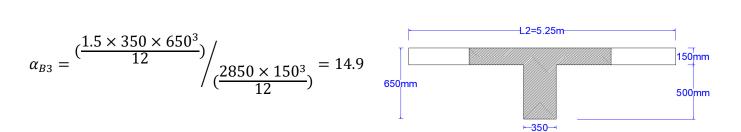
L2=6.75m

L2=6750 +450/2 =3600mm

150mm

0.5m

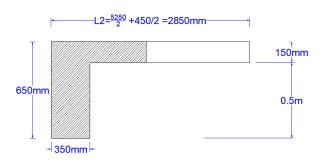
$$\alpha_{B2} = (\frac{1.5 \times 350 \times 650^{3}}{12}) / (\frac{3600 \times 150^{3}}{12}) = 11.6$$



650mm

-∫350mm |-

$$\alpha_{B4} = (\frac{2 \times 350 \times 650^3}{12}) / (\frac{5250 \times 150^3}{12}) = 10.8$$



∴ panel I:
$$\alpha_{fm} = \frac{2 \times 8.43 + 2 \times 10.8}{4} = 9.6 > 2$$

$$panel~II: \alpha_{fm} = \frac{8.43 + 11.6 + 2 \times 10.8}{4} = 10.9 > 2$$

panel III:
$$\alpha_{fm} = \frac{2 \times 8.43 + 14.9 + 10.8}{4} = 10.6 > 2$$

$$panel~IV: \alpha_{fm} = \frac{8.43 + 11.6 + +14.9 + 10.8}{4} = 11.4 > 2$$

Use Table 8.3.1.2:

For panel II & IV:
$$l_n = 6750 - 125 - \frac{350}{2} = 6450mm$$

For panel III & IV:
$$S_n = 5250 - 125 - \frac{350}{2} = 4950mm$$

For panel I & III:
$$l_n = 6750 - 350 = 6400mm$$

For panel I & II:
$$S_n = 5250 - 350 = 4900mm$$

Panel II:
$$\beta = \frac{l_n}{s_n} = \frac{6400}{4900} = 1.3$$
 Panel II: $\beta = \frac{l_n}{s_n} = \frac{6450}{4900} = 1.31$ Panel III: $\beta = \frac{l_n}{s_n} = \frac{6400}{4950} = 1.293$ Panel IV: $\beta = \frac{l_n}{s_n} = \frac{6450}{4950} = 1.3$

Panel III:
$$\beta = \frac{l_n}{s_n} = \frac{6400}{4950} = 1.293$$
 Panel IV: $\beta = \frac{l_n}{s_n} = \frac{6450}{4950} = 1.3$

Panel I:
$$h = \frac{6400(0.8 + \frac{420}{1400})}{36 + 9(1.3)} = 147.5 mm > 90 mm$$

Panel II:
$$h = 148.4mm > 90mm$$

Panel III:
$$h = 147.7mm > 90mm$$

Panel IV:
$$h = 148.7mm > 90mm$$

$$\therefore all \ h < h_{slab \ given} = 150mm$$

$$harphi h = 150mm$$