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1. Self-Induction 

If two coils—which we can now call inductors—are near each other, a current i in one coil 

produces a magnetic flux 𝐵  through the second coil. We have seen that if we change this 

flux by changing the current, an induced emf appears in the second coil according to 

Faraday’s law. An induced emf appears in the first coil as well. 

An induced emf 
𝐿
 appears in any coil in which the current is changing. 

This process (see Figure (1)) is called self-induction, and the emf that appears is called a 

self-induced emf. It obeys Faraday’s law of induction just as other induced emfs do. 

The inductance L of the inductor is then defined in terms of that magnetic flux 𝐵 as: 

𝐿 =
𝑁𝐵

𝑖
     (1) 

in which N is the number of turns and i is a current. 

For any inductor, Equation (1) tells us that: 

𝑁𝐵 = 𝐿𝑖    (2) 

Faraday’s law tells us that: 


𝐿 

= −
𝑑(𝑁𝐵)

𝑑𝑡
       (3) 

By combining equations (2) and (3) we can write: 


𝐿 

= −𝐿 
𝑑𝑖

𝑑𝑡
  (𝑠𝑒𝑙𝑓 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑒𝑚𝑓)     (4) 

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf appears 

whenever the current changes with time. The magnitude of the current has no influence on 

the magnitude of the induced emf, only the rate of change of the current counts. 

Direction. You can find the direction of a self-induced emf from Lenz’s law. The minus 

sign in Equation (4) indicates that—as the law states—the self-induced emf 
𝐿 

 has the 



orientation such that it opposes the change in current i. We can drop the minus sign when 

we want only the magnitude of 
𝐿 

. 

 

Figure (1): If the current in a coil is changed by varying the contact position on a variable  

resistor, a self-induced emf 
𝐿 

. will appear in the coil while the current is changing. 

 

2. RL Circuits 

 We saw that if we suddenly introduce an emf  into a single-loop circuit containing a 

resistor R and a capacitor C, the charge on the capacitor does not build up immediately to 

its final equilibrium value C but approaches it in an exponential fashion: 

   (5) 

The rate at which the charge builds up is determined by the capacitive time constant 𝜏𝐶 , 

defined as: 

 

If we suddenly remove the emf from this same circuit, the charge does not immediately fall 

to zero but approaches zero in an exponential fashion: 

       (6) 

The time constant 𝜏𝐶 ,  describes the fall of the charge as well as its rise. 

An analogous slowing of the rise (or fall) of the current occurs if we introduce an emf  

into (or remove it from) a single-loop circuit containing a resistor R and an inductor L. 



When the switch S in Figure (2) is closed on a, for example, the current in the resistor starts 

to rise. If the inductor were not present, the current would rise rapidly to a steady value 

/R. Because of the inductor, however, a self-induced emf 
𝐿 

 appears in the circuit; from 

Lenz’s law, this emf opposes the rise of the current, which means that it opposes the battery 

emf  in polarity. Thus, the current in the resistor responds to the difference between two 

emfs, a constant  due to the battery and a variable 
𝐿 

 (= -L di/dt) due to self-induction. 

As long as this 
𝐿 

 is present, the current will be less than /R. 

 

Figure (2) An RL circuit. When switch S is closed on a, the current rises and approaches a 

limiting value /R. 

Initially, an inductor acts to oppose changes in the current through it. A long time later, it 

acts like ordinary connecting wire. 

Now let us analyze the situation quantitatively. With the switch S in Figure (2) thrown to 

a, the circuit is equivalent to that of Figure (3). Let us apply the loop rule, starting at point 

x in this figure and moving clockwise around the loop along with current i. 

1. Resistor. Because we move through the resistor in the direction of current i, the 

electric potential decreases by iR. Thus, as we move from point x to point y, we 

encounter a potential change of -iR. 

2. Inductor. Because current i is changing, there is a self-induced emf 
𝐿 

 in the 

inductor. The magnitude of 
𝐿 

 is given by Equation (4) as L di/dt. The direction of 


𝐿 

 is upward in Figure (3) because current i is downward through the inductor and 

increasing. Thus, as we move from point y to point z, opposite the direction of 
𝐿 

, 

we encounter a potential change of  - L di/dt. 



3. Battery. As we move from point z back to starting point x, we encounter a potential 

change of + due to the battery’s emf. 

 

Figure (3) The circuit of Fig. 30-15 with the switch closed on a. We apply the loop 

rule for the circuit clockwise, starting at x. 

Thus, the loop rule gives us: 

               (7) 

Equation (7) is a differential equation involving the variable i and its first derivative di/dt. 

To solve it, we seek the function i(t) such that when i(t) and its first derivative are 

substituted in Equation (7), the equation is satisfied and the initial condition i(0) = 0 is 

satisfied. 

   (8) 

Here 𝜏𝐿 ,  , the inductive time constant, is given by: 

 

Let’s examine Equation (7) for just after the switch is closed (at time t = 0) and for a time 

long after the switch is closed t  . 

3. Mutual Induction 

In this section we return to the case of two interacting coils, which we first discussed, and 

we treat it in a somewhat more formal manner. We saw earlier that if two coils are close 

together, a steady current i in one coil will set up a magnetic flux  through the other coil 

(linking the other coil). If we change i with time, an emf  given by Faraday’s law appears 

in the second coil; we called this process induction. We could better have called it mutual 



induction, to suggest the mutual interaction of the two coils and to distinguish it from self-

induction, in which only one coil is involved. 

Let us look a little more quantitatively at mutual induction. Figure (4-a) shows two circular 

close-packed coils near each other and sharing a common central axis. With the variable 

resistor set at a particular resistance R, the battery produces a steady current i1 in coil 1. 

This current creates a magnetic field represented by the lines of 𝐵1 in the figure. Coil 2 is 

connected to a sensitive meter but contains no battery; a magnetic flux 21  (the flux 

through coil 2 associated with the current in coil 1) links the N2 turns of coil 2. 

 

Figure (4) Mutual induction. (a) The magnetic field 𝑩⃗⃗ 𝟏 produced by current i1 in coil 1 

extends through coil 2. If i1 is varied (by varying resistance R), an emf is induced in coil 2 

and current registers on the meter connected to coil 2. (b) The roles of the  coils 

interchanged. 

 

We define the mutual inductance M21 of coil 2 with respect to coil 1 as: 

  (9) 

which has the same form as Equation (2): 

 



the definition of inductance. We can recast Equation (9) as: 

 

If we cause i1 to vary with time by varying R, we have 

 

The right side of this equation is, according to Faraday’s law, just the magnitude of the emf 


2
 appearing in coil 2 due to the changing current in coil 1.Thus, with a minus sign to 

indicate direction: 

 

Interchange. Let us now interchange the roles of coils 1 and 2, as in Figure (4-b); that is, 

we set up a current i2 in coil 2 by means of a battery, and this produces a magnetic flux 

12  that links coil 1. If we change i2 with time by varying R, we then have, by the argument 

given above: 

 

Thus, we see that the emf induced in either coil is proportional to the rate of change of 

current in the other coil. The proportionality constants M21 and M12 seem to be different. 

However, they turn out to be the same, although we cannot prove that fact here. Thus, we 

have: 

 

 

 


