Al-Mustaqbal University College Department of Computer Engineering Techniques

Information Theory and coding Fourth stage

Lecture 2

Random Variables

Random Variables:

A random variable, usually written X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types of random variables, discrete and continuous. All random variables have a cumulative distribution function. It is a function giving the probability that the random variable X is less than or equal to x , for every value x .

1. Discrete Random Variable

A discrete random variable is one which may take on only a countable number of distinct values such as $0,1,2,3,4, \ldots \ldots$. . If a random variable can take only a finite number of distinct values, then it must be discrete. Examples of discrete random variables include the number of children in a family, the number of defective light bulbs in a box of ten. The probability distribution of a discrete random variable is a list of probabilities associated with each of its possible values. It is also sometimes called the probability function or the probability mass function.

When the sample space Ω has a finite number of equally likely outcomes, so that the discrete uniform probability law applies. Then, the probability of any event x is given by:

$$
p(A)=\frac{\text { Number of elements of } \mathrm{x}}{\text { Number of elements of } \Omega}
$$

This distribution may also be described by the probability histogram. Suppose a random variable X may take k different values, with the probability that $\mathrm{X}=x i$ defined to be
$\mathrm{P}(\mathrm{X}=x i)=P i$. The probabilities $P i$ must satisfy the following:
1- $0<P i<1$ for each i
2- $P 1+P 2+\cdots+P k=1$ or,

$$
\sum_{i=1}^{k} P_{i}=1
$$

Example: Suppose a variable X can take the values 1, 2, 3, or 4 . The probabilities associated with each outcome are described by the following table:

Outcome: $1 \begin{array}{llll} & 2 & 3\end{array}$
Probability: $\begin{array}{llll}0.1 & 0.3 & 0.4 & 0.2\end{array}$
plot the probability distribution and the cumulative distribution.

The cumulative distribution function for the above probability distribution is calculated as follows:

The probability that X is less than or equal to 1 is 0.1 , the probability that X is less than or equal to 2 is $0.1+0.3=0.4$, the probability that X is less than or equal to 3 is $0.1+0.3+0.4=0.8$, and, the probability that X is less than or equal to 4 is $0.1+0.3+0.4+0.2=1$.

Department of Computer Engineering Techniques (Stage: 4) Information Theory and coding
H.W: Having a text of (ABCAABDCAA). Calculate the probability of each letter, plot the probability distribution and the cumulative distribution.

2. Continuous Random Variables

A continuous random variable is one which takes an infinite number of possible values. Continuous random variables are usually measurements. Examples include height, weight and the amount of sugar in an orange. A continuous random variable is not defined at specific values. Instead, it is defined over an interval of values, and is represented by the area under a curve. The curve, which represents a function $p(x)$, must satisfy the following:

1: The curve has no negative values $(p(x) \geq 0$ for all x)
2: The total area under the curve is equal to 1 .
A curve meeting these requirements is known as a density curve. If any interval of numbers of equal width has an equal probability, then the curve describing the distribution is a rectangle, with constant height across the interval and 0 height elsewhere, these curves are known as uniform distributions.

Another type of distribution is the normal distribution having a bell-shaped density curve described by its mean μ and standard deviation σ. The height of a normal density curve at a given point x is given by:

$$
h=\frac{1}{\sigma \sqrt{2 \pi}} e^{-0.5\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

The Standard normal curve

Joint Probability:

Joint probability is the probability of event Y occurring at the same time event X occurs. Its notation is $P(X \cap Y)$ or $P(X, Y)$, which reads; the joint probability of X and Y.

$$
P(X, Y)=P(X) \times P(Y)
$$

Example: For discrete random variable, if the probability of rolling a four on one die is $P(X)$ and if the probability of rolling a four on second die is $P(Y)$. Find $P(X, Y)$.

Solution: We have $P(X)=P(Y)=1 / 6$

$$
\begin{aligned}
P(X, Y) & =P(X) \times P(Y) \\
& =1 / 6 \times 1 / 6 \\
& =1 / 36 \\
& =0.0277=2.8 \%
\end{aligned}
$$

Example : if you have the joint probability as shown in this matrix; find the probability of the each single value

$$
P(x, y)=\left[\begin{array}{cc}
0.1 & 0.25 \\
0 & 0.2 \\
0.25 & 0.2
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x} 1)=\sum^{{ }_{\mathrm{j}=1}} \mathrm{p}(\mathrm{x} 1, \mathrm{yj})=0.1+0.25=0.35 \\
& \mathrm{p}(\mathrm{x} 2)=\sum^{2}{ }_{\mathrm{j}=1} \mathrm{p}(\mathrm{x} 2, \mathrm{yj})=0+0.2=0.2 \\
& \mathrm{p}(\mathrm{x} 3)=\sum^{2}{ }_{\mathrm{j}=1} \mathrm{p}(\mathrm{x} 3, \mathrm{yj})=0.25+0.2=0.45 \\
& \mathrm{p}(\mathrm{y} 1)=\sum^{3_{i=1}} \mathrm{p}(\mathrm{xi}, \mathrm{y} 1)=0.1+0+0.25=0.35 \\
& \mathrm{p}(\mathrm{y} 2)=\sum^{3_{i=1}} \mathrm{p}(\mathrm{xi}, \mathrm{y} 2)=0.25+2+0.2=0.65
\end{aligned}
$$

Then:

$$
\mathrm{p}(\mathrm{x})=\left[\begin{array}{lll}
0.35 & 0.2 & 0.45
\end{array}\right] \quad \text { and } \quad \mathrm{p}(\mathrm{y})=[0.35
$$

