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1. MAGNETISM AND ELECTRONS 

Magnetic materials, from lodestones to tattoos, are magnetic because of the electrons  

within them. We have already seen one way in which electrons can generate a magnetic 

field: Send them through a wire as an electric current, and their motion produces a magnetic 

field around the wire. There are two more ways, each involving a magnetic dipole moment 

that produces a magnetic field in the surrounding space. However, their explanation 

requires quantum physics that is beyond the physics presented in this book, and so here we 

shall only outline the results. 

2. Spin Magnetic Dipole Moment 

An electron has an intrinsic angular momentum called its spin angular momentum (or 

just spin) 𝑆; associated with this spin is an intrinsic spin magnetic dipole moment 𝜇𝑠. (By 

intrinsic, we mean that 𝑆 and 𝜇𝑠 are basic characteristics of an electron, like its mass and 

electric charge.) Vectors 𝑆 and 𝜇𝑠 are related by: 

      (1) 

in which e is the elementary charge (1.60 * 10-19 C) and m is the mass of an electron (9.11 

* 10-31 kg). The minus sign means that 𝑆 and 𝜇𝑠are oppositely directed. Spin 𝑆  is different 

from the angular momenta in two respects: 

1. Spin 𝑆  itself cannot be measured. However, its component along any axis can be 

measured. 

2. A measured component of 𝑆  is quantized, which is a general term that means it is 

restricted to certain values. A measured component of 𝑆 can have only two values, which 

differ only in sign. 

Let us assume that the component of spin 𝑆 is measured along the z axis of a coordinate 

system. Then the measured component Sz can have only the two values given by: 

        (2) 



where ms is called the spin magnetic quantum number and h (= 6.63 * 10-34 J.s) is the 

Planck constant, the ubiquitous constant of quantum physics. The signs given in equation 

(2) have to do with the direction of Sz along the z axis. When Sz is parallel to the z axis, ms 

is +
1

2
 and the electron is said to be spin up. When Sz is antiparallel to the z axis, ms is −

1

2
  

and the electron is said to be spin down. 

The spin magnetic dipole moment 𝜇𝑠  of an electron also cannot be measured; only its 

component along any axis can be measured, and that component too is quantized, with two 

possible values of the same magnitude but different signs. We can relate the component 

𝜇 𝑠,𝑧 measured on the z axis to Sz by rewriting equation (1)in component form for the z axis as: 

 

Substituting for Sz from equation (2) then gives us: 

 

where the plus and minus signs correspond to 𝜇 𝑠,𝑧  being parallel and antiparallel to the z 

axis, respectively. The quantity on the right is the Bohr magneton 𝜇𝐵: 

 

Spin magnetic dipole moments of electrons and other elementary particles can be expressed 

in terms of  𝜇𝐵. For an electron, the magnitude of the measured z component of 𝜇𝑠 is: 

 

Energy. When an electron is placed in an external magnetic field �⃗⃗�𝑒𝑥𝑡 , an energy U can be 

associated with the orientation of the electron’s spin magnetic dipole moment 𝜇𝑠 just as an 

energy can be associated with the orientation of the magnetic dipole moment 𝜇  of a 

current loop placed in �⃗⃗�𝑒𝑥𝑡 . The orientation energy for the electron is: 

 

where the z axis is taken to be in the direction of �⃗⃗�𝑒𝑥𝑡 . 



If we imagine an electron to be a microscopic sphere (which it is not), we can represent the 

spin 𝑆, the spin magnetic dipole moment 𝜇𝑠, and the associated magnetic dipole field as in 

Figure (1).Although we use the word “spin” here, electrons do not spin like tops. How, 

then, can something have angular momentum without actually rotating? Again, we would 

need quantum physics to provide the answer. 

 

Figure (1): The spin 𝑆, spin magnetic dipole moment 𝜇𝑠, and magnetic dipole field �⃗⃗� of an 

electron represented as a microscopic sphere. 

Protons and neutrons also have an intrinsic angular momentum called spin and an 

associated intrinsic spin magnetic dipole moment. For a proton those two vectors have the 

same direction, and for a neutron they have opposite directions. We shall not examine the 

contributions of these dipole moments to the magnetic fields of atoms because they are 

about a thousand times smaller than that due to an electron. 

3. Orbital Magnetic Dipole Moment 

When it is in an atom, an electron has an additional angular momentum called its orbital 

angular momentum �⃗⃗⃗�𝒐𝒓𝒃 . Associated with �⃗⃗⃗�𝒐𝒓𝒃  is an orbital magnetic dipole moment 

𝜇𝑜𝑟𝑏 ; the two are related by: 

   (3) 

The minus sign means that �⃗⃗⃗�𝒐𝒓𝒃  and �⃗⃗�𝑜𝑟𝑏  have opposite directions. 



Orbital angular momentum �⃗⃗� 𝑜𝑟𝑏 cannot be measured; only its component along any axis 

can be measured, and that component is quantized. The component along, say, a z axis can 

have only the values given by: 

     (4) 

in which 𝑚ℓ is called the orbital magnetic quantum number and “limit” refers to some 

largest allowed integer value for 𝑚ℓ. The signs in equation (4)have to do with the direction 

of �⃗⃗� 𝑜𝑟𝑏,𝑧 along the z axis. 

The orbital magnetic dipole moment 𝜇𝑜𝑟𝑏  of an electron also cannot itself be measured; 

only its component along an axis can be measured, and that component is quantized. By 

writing equation (3)for a component along the same z axis as above and then substitut ing 

for 𝐿𝑜𝑟𝑏,𝑧   from equation (4), we can write the z component 𝜇𝑜𝑟𝑏,𝑍   of the orbital magnetic 

dipole moment as: 

 

and, in terms of the Bohr magneton, as: 

 

When an atom is placed in an external magnetic field �⃗⃗�𝑒𝑥𝑡 , an energy U can be associated 

with the orientation of the orbital magnetic dipole moment of each electron in the atom. Its 

value is: 

 

where the z axis is taken in the direction of �⃗⃗�𝑒𝑥𝑡 . 

Although we have used the words “orbit” and “orbital” here, electrons do not orbit the 

nucleus of an atom like planets orbiting the Sun. How can an electron have an orbital 

angular momentum without orbiting in the common meaning of the term? Once again, this 

can be explained only with quantum physics. 



4. Loop Model for Electron Orbits 

We can obtain equation (3) with the nonquantum derivation that follows, in which we 

assume that an electron moves along a circular path with a radius that is much larger than 

an atomic radius (hence the name “loop model”). However, the derivation does not apply 

to an electron within an atom (for which we need quantum physics). 

We imagine an electron moving at constant speed v in a circular path of radius r, 

counterclockwise as shown in Figure (2). The motion of the negative charge of the electron 

is equivalent to a conventional current i (of positive charge) that is clockwise, as also shown 

in Figure (2). The magnitude of the orbital magnetic dipole moment of such a current loop 

is obtained from equation (6) with N = 1: 

    (5) 

where A is the area enclosed by the loop. The direction of this magnetic dipole moment is, 

from the right-hand rule, downward in Figure (2). 

 

Figure (2): An electron moving at constant speed v in a circular path of radius r that 

encloses an area A. The electron has an orbital angular momentum �⃗⃗� 𝑜𝑟𝑏 and an associated 

orbital magnetic dipole moment 𝜇𝑜𝑟𝑏 . A clockwise current i (of positive charge) is 

equivalent to the counterclockwise circulation of the negatively charged electron. 



To evaluate equation (5), we need the current i. Current is, generally, the rate at which 

charge passes some point in a circuit. Here, the charge of magnitude e takes a time T = 

2πr/v to circle from any point back through that point, so: 

 

Substituting this and the area A = πr2 of the loop into equation (5) gives us 

        (6) 

To find the electron’s orbital angular momentum �⃗⃗�𝑜𝑟𝑏 , we use equation, ℓ⃗⃗ = 𝑚 (𝑟 ×

�⃗�).Because 𝑟 and �⃗� are perpendicular, �⃗⃗�𝑜𝑟𝑏  has the magnitude: 

     (7) 

The vector �⃗⃗�𝑜𝑟𝑏  is directed upward in Figure (2). Combining equation (6 and 7), 

generalizing to a vector formulation, and indicating the opposite directions of the vectors 

with a minus sign yield: 

 

which is equation (3). Thus, by “classical” (nonquantum) analysis we have obtained the 

same result, in both magnitude and direction, given by quantum physics. You might 

wonder, seeing as this derivation gives the correct result for an electron within an atom, 

why the derivation is invalid for that situation. The answer is that this line of reasoning 

yields other results that are contradicted by experiments. 

 

 


