

AL- MUSTAQBAL UNIVERSITY COLLEGE DEPARTMENT OF BIOMEDICAL ENGINEERING

Digital Signal Processing (DSP) BME 312

Lecture 1

- Matlab Basics Review -

Dr. Zaidoon AL-Shammari

Lecturer / Researcher

zaidoon.waleed@mustaqbal-college.edu.iq

Matlab

- Matlab ® is a software tool, originally developed as a "Matrix Laboratory" but now used in almost all areas of science and engineering.
- This software is used by scientists, engineers, teachers and students in both academic institutes and industries dealing with problem solving in basic mathematics, graphics, differential equations, electric/electronic circuits, simulation, control systems & automation, signal processing, image processing, statistics, aerospace, telecom, bioinformatics and many other applications.

Mathematical operations

Mathematical operations

```
Add x+y
```

Subtract x − y

Multiply x * y

Divide x/y

```
Command Window
                                          ** 🖂 🛪 🗙
  >> 2+3
  ans =
  >> 3.5-6.4
  ans =
      -2.9000
  >> 6*4.24
  ans =
      25.4400
  >> 5/2.1
  ans =
       2.3810
f_{x} >>
```

Mathematical operations

Mathematical operations

```
Power
x<sup>y</sup> ≡ x^y
```

• Square root $\sqrt{x} \equiv \operatorname{sqrt}(x)$

Exponential
 e^x ≡ exp(x)

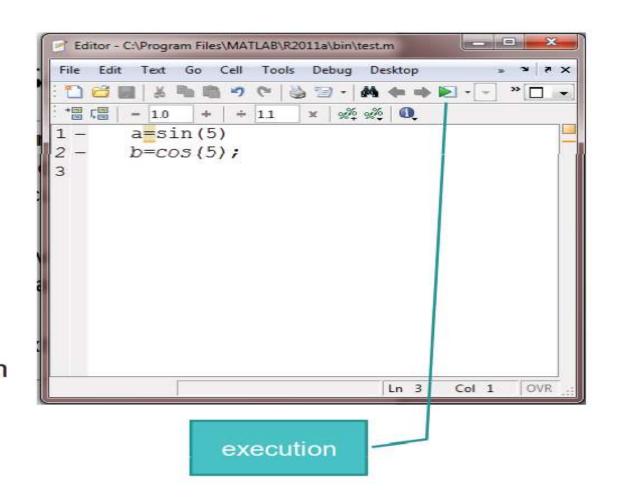
```
→1 🔲 7 ×
Command Window
  >> 2^3
  āns =
        8
  >> sqrt(9)
  ans =
        3
  >> exp(1)
  ans =
       2.7183
fx >>
```

Matlab Quiet

Making Matlab Quiet

Any line in a script that ends with a semicolon (;) will execute without printing to the screen.

```
× 5 □ 1+
Command Window
  >> a=sin(5);
  >> b=cos(5)
       0.2837
```


Script Files

Making Script Files

- Your work in Matlab can be stored in a script file to be executed over and over again.
- A script can be filled with a sequence of Matlab commands that will be executed from top to bottom
- These files have .m extensions

Add Comments to Programs

Add Comments to Programs

- Comments allow others to understand your code, and can refresh your memory when you return to it later.
- To add comments, we use the percent (%) symbol.

```
% This is a program that has a comment that is a little more than 75
% columns wide.
disp('Hello, world')
```

Clear memory

₽ CIC

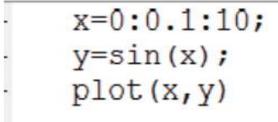
Clear Command Window (clean screen)

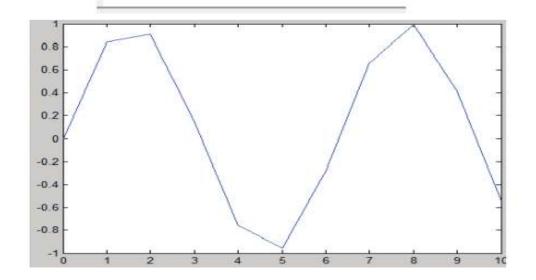
Clear all

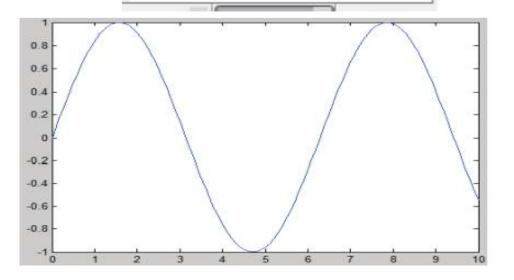
delete all stored variables in your workspace

∂close all

close all of figures that you have generated in your program

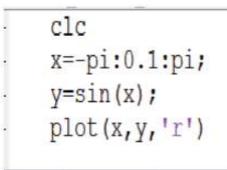


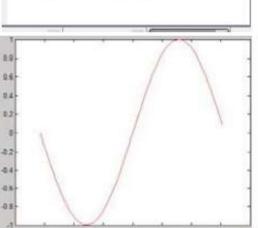


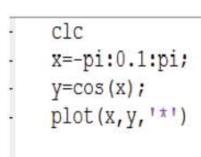

Two-dimensional Plot

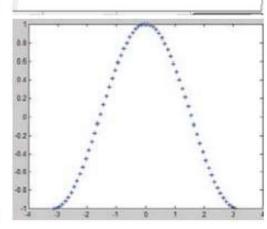
plot(independent variable, dependent variable)

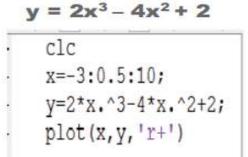
```
x=0:10;
y=sin(x);
plot(x,y)
```

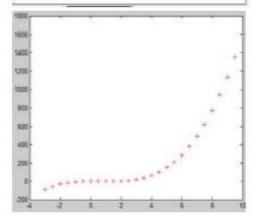


Two-dimensional Plot (properties)

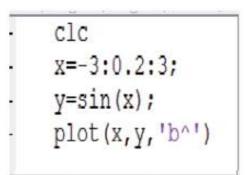


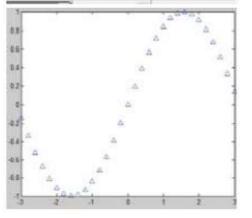



Two-dimensional Plot (properties)


Examples:



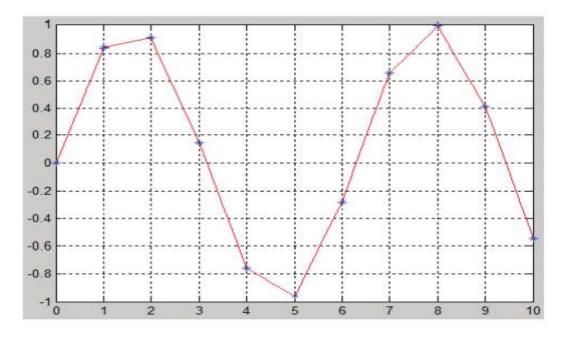




Two-dimensional Plot (properties)

Two-dimensional Plot (properties)

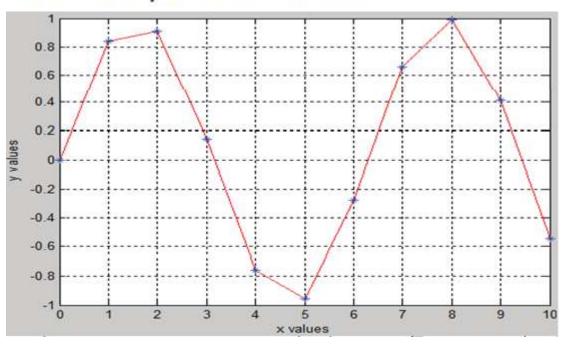
plot(independent variable, dependent variable, 'PropertyName')


1st char	meaning	2nd char	meaning	3rd char	meaning
У	yellow		point	-	solid
m	magenta	0	circle	:	dotted
C	cyan	x	x-mark	- 14	dashdot
r	red	+	plus		dashed
g	green	*	star		
b	blue	S	square		
W	white	d	diamond		
k	black	v	triangle (down)		
		^	triangle (up)		
		<	triangle (left)		
		>	triangle (right)		
		p	pentagram		

Two-dimensional Plot (grid plotting)

- Using: grid
- Note: grid command must be come after plot command

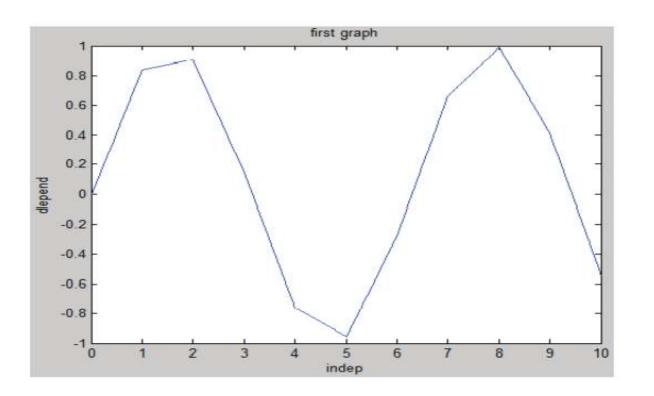
```
clc
x=0:10;
y=sin(x);
plot(x,y,'r',x,y,'b*')
grid
```



Two-dimensional Plot (axes label)

- X-axis labeling: xlabel('name')
- Y-axis labeling: ylabel('name')
- Note: labeling commands must be come after plot command

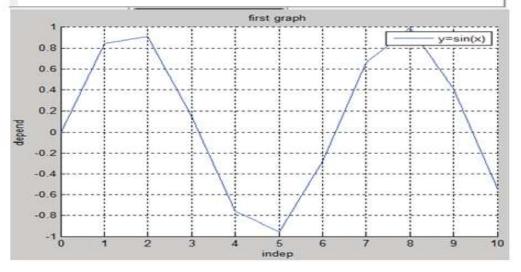
```
x=0:10;
y=sin(x);
plot(x,y,'r',x,y,'b*')
xlabel('x values')
ylabel('y values')
```

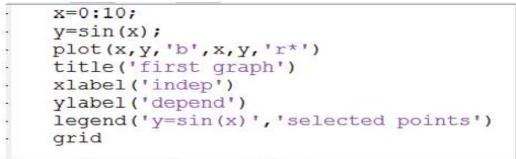


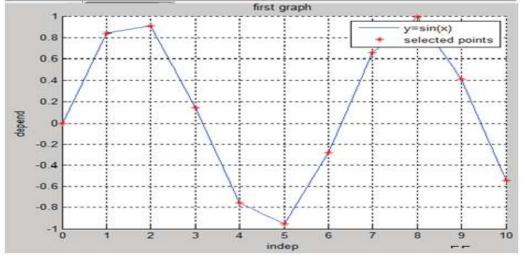
Two-dimensional Plot (axes title)

- Title of axes: title('name')
- Note: title command must be come after plot command

```
clc
x=0:10;
y=sin(x);
plot(x,y,'b')
title('first graph')
xlabel('indep')
ylabel('depend')
```

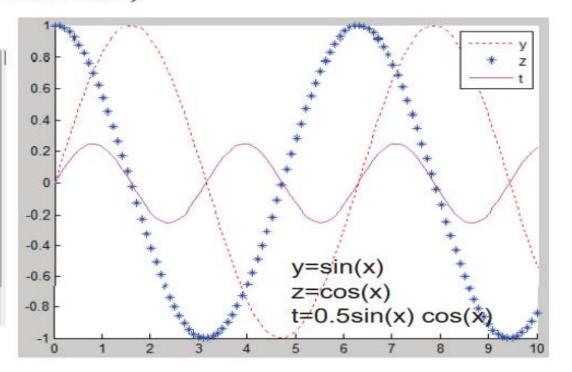





Two-dimensional Plot (legend)

Using: legend('name')

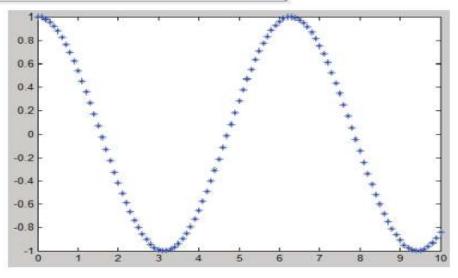
```
x=0:10;
y=sin(x);
plot(x,y,'b')
title('first graph')
xlabel('indep')
ylabel('depend')
legend('y=sin(x)')
grid
```

Two-dimensional Plot (plotting several curves in the same window)

- Using: hold on (before plot commands)
- Using: hold off (after plot command)

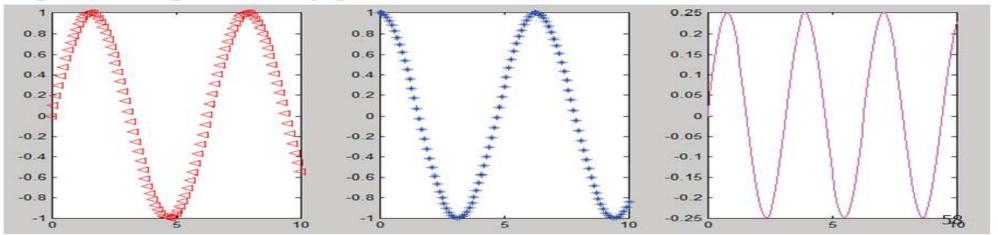
```
clc
x=0:0.1:10;
y=sin(x);
z=cos(x);
t=0.5*sin(x).*cos(x);
hold on
plot(x,y,'r:');
plot(x,z,'b*');
plot(x,t,'m');
legend('y','z','t')
hold off
```

Two-dimensional Plot (plotting several curves in separated windows)

> Using: figure

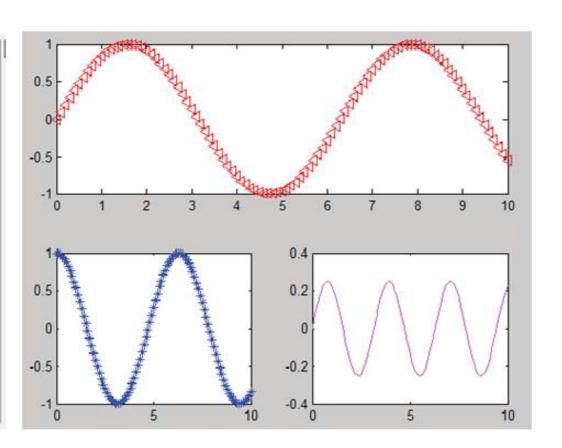
```
clc
x=0:0.1:10;
y=sin(x);
z=cos(x);
plot(x,y,'r<');
figure
plot(x,z,'b*');</pre>
```



Al- Mustaqbal University College

Two-dimensional Plot (plotting several curves in three stacked subplots)

- Using: subplot (before plot command)
- ☐ Command: subplot(m,n,p)
- ☐ It divides the current figure into an m-by-n grid and creates an axes in the grid position specified by p.

```
clc
x=0:0.1:10;
y=sin(x);
z=cos(x);
t=0.5*sin(x).*cos(x);
subplot(1,3,1)
plot(x,y,'r<');
subplot(1,3,2)
plot(x,z,'b*');
subplot(1,3,3)
plot(x,t,'m');</pre>
```



Two-dimensional Plot (example 2) (plotting several curves in three stacked subplots)

```
clc
x=0:0.1:10;
y=sin(x);
Z=COS(X);
t=0.5*sin(x).*cos(x);
subplot (2, 2, [1 2])
plot(x, y, 'r<');
subplot(2,2,3)
plot(x,z,'b*');
subplot(2,2,4)
plot(x,t,'m');
```


AL- MUSTAQBAL UNIVERSITY COLLEGE DEPARTMENT OF BIOMEDICAL ENGINEERING

