Al-mustaqbal University collage
Biomedical Engineering Department
Class: First
Subject: Computer Skills \& Programming

Lecture 4: operators in C++ LANGUAGE

BY

IT. Zahraa Abdzaid AbdelAbbas

Supervised by: ASS.T. Hala Fadel Alaiwi

1. $\mathrm{C}++$ Operators:

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. There are four general classes of operators in $\mathrm{C}++$: arithmetic, relational and logical, and bitwise. In addition, there are some special operators for particular tasks.

1.1 Arithmetic Operators:

Arithmetic operators are used to perform the basic arithmetic operations. They areexplained in the following table:

Operator	Usage	Examples
$\boldsymbol{+}$	Used for addition	Sum $=\mathrm{a}+\mathrm{b}$
$\mathbf{-}$	Used for subtraction	Difference $=\mathrm{a}-\mathrm{b}$
$*$	Used for multiplication	Product $=\mathrm{a} \quad$ * b
$\boldsymbol{/}$	Used for division	Quotient $=\mathrm{a} / \mathrm{b}$
$\boldsymbol{\%}$	This operator is called the remainder or the modulus operator. It is used to find the remainder after the division. This operator cannot be used with floating type variables.	Remainder $=\mathrm{a} \% \mathrm{~b}$

Example (1):

\#include<iostream.h>
\#include <conio.h>
main() \{ int x, y;
cout<< "Enter Two Integers:";
$\operatorname{cin} \gg x \gg y ;$
cout<<"The Intergers are:" \ll $\mathrm{x} \ll$ "and" \ll y <<endl;
cout<<"The sum is" $\ll(x+y) \ll e n d l$;
cout<<"The difference is " << $(x-y) \ll e n d l$;
cout<<"The product is" < $<\left(x^{*} y\right) \ll e n d l$;
cout<<"The division is" << $(x / y) \ll e n d l$;
cout<<"The modulus is" << $(x \% y) \ll e n d l ;$
cout<<"The equation is $\quad " \ll((\mathrm{x}+\mathrm{y}) / 3) \ll \mathrm{endl}$;
getch(); \}

Output:

Enter Two Integers:5
4
The Intergers are:5and4
The sum is 9
The difference is 1
The product is 20
The division is 1
The modulus is 1
The equation is 3

Example (2):

Write a program in $\mathbf{C}++$ to calculate the area of a circle in terms of radius

```
#include<iostream.h>
#include<conio.h>
main( )
{
float R, Area;
    float p1 = 3.14;
    cout << " Enter radius of circle: ";
    cin >> R;
    Area = p1*R*R;
    cout << " Area is: " << Area << endl;
getch( );
}
```

Output:
Enter radius of circle: 4
Area is: 50.24

Increment and Decrement Operator:

C++ allows two very useful operators not generally found in other computer languages. These are the Increment (++) and Decrement (- -) operators. The operation ++ adds 1 to its operand, and $-\quad$ subtracts 1.Therefore, the following are equivalent operations:
$\mathrm{x}=\mathrm{x}+1 ; \quad$ is the same as $\quad++\mathrm{x} ; \quad$ Or $\mathrm{x}++$;

Also,
$\mathrm{x}=\mathrm{x}-1 ; \quad$ is the same as $\quad--\mathrm{x} ; \quad$ Or $\mathrm{x}--;$

However, there is a difference when they are used in an expression. When an increment or decrement operator precedes its operand, $\mathrm{C}++$ performs the increment or decrement operation prior to obtaining the operand's value.

Operator	Pre or post	Description
$++\mathbf{k}$	Pre-increment	First increase the value of k by one then evaluate the current statement by taking incremented value.
$\mathbf{k + +}$	Post-increment	First use the current value of k to evaluate the current statements then increase k by unity.
$--\mathbf{k}$	Pre-decrement	First decrease the value of k by unity then evaluate the statement.
$\mathbf{k}--$	Post-decrement	First use the current value of k to evaluate the current statements then decrease k by unity.

Example (3):

Write a program in C++ language to test the operation of arithmetic operators with printing the result appearing on the screen of computer. \#include<iostream.h>
\#include<conio.h>
main()
\{
int $\mathrm{a}=21$;
int c ;
// Value of a will not be increased before assignment.
$\mathrm{c}=\mathrm{a}++;$
cout << "Line 1-Value of a++ is :" << c << endl ;
// After expression value of a is increased
cout << "Line 2 - Value of a is :" << a << endl ;
// Value of a will be increased before assignment.
$\mathrm{c}=++\mathrm{a}$;
cout << "Line 3 - Value of ++a is :" << c << endl;
getch();\}
The result appearing on the screen of computer is:
Line 1 - Value of $a++$ is :21
Line 2 - Value of a is :22
Line 3 - Value of ++a is :23

1.2 Relational Operators:

In the term relational operator the word relational refers to the relationships values can have with one another. The key to the concepts of relational operators is the idea of true and false. In $\mathrm{C}++$, true is any value other than 0 . False is 0 . Expressions that use relational operators will return $\mathbf{0}$ for false and 1 for true.

Operator	Action (Relational Operators)
$>$	Greater than
$>=$	Greater than or equal
$<$	Less than
$<=$	Less than or equal
$==$	Equal
$!=$	Not equal

Example (5):

Write a program in $\mathrm{C}++$ language to test the operation of Relational Operators with printing the result appearing on the screen of computer.

Ans:

\#include<iostream.h>
\#include<conio.h>
// Program to test Relational Operators
main()
\{
int $\mathrm{A}=57, \mathrm{~B}=57$;
char $\mathrm{C}=$ ' 9 ';
cout<<(int(C))<<endl;
cout<<"(A<57)="<<(A<57)<<endl;
cout<<" $(\mathrm{A}<90)=" \ll(\mathrm{~A}<90) \ll$ endl;
cout<<" $(\mathrm{A}<30)=" \ll(\mathrm{~A}<30) \ll$ endl;
cout<<" $(\mathrm{A}<=57)=" \ll(\mathrm{~A}<=57) \ll$ endl;
cout<<" $(\mathrm{A}>\mathrm{B})=" \ll(\mathrm{~A}>\mathrm{B}) \ll$ endl;
cout<<" $(\mathrm{A}>=\mathrm{B})=" \ll(\mathrm{~A}>=\mathrm{B}) \ll$ endl;
cout<<" $(\mathrm{A}==\mathrm{B})=" \ll(\mathrm{~A}==\mathrm{B}) \ll$ endl;
cout<<" $\mathrm{A}!=\mathrm{B})=" \ll(\mathrm{~A}!=\mathrm{B}) \ll$ endl;
cout $\ll "(\mathrm{~A}==\mathrm{C})=" \ll(\mathrm{~A}==\mathrm{C}) \ll$ endl;
getch();
\}

Output:

57
$(\mathrm{A}<57)=0$
$(\mathrm{A}<90)=1$
$(\mathrm{A}<30)=0$
($\mathrm{A}<=57$) $=1$
$(\mathrm{A}>\mathrm{B})=0$
$(\mathrm{A}>=\mathrm{B})=1$
$(\mathrm{A}=\mathrm{=} \mathrm{~B})=1$
$(\mathrm{A}!=\mathrm{B})=0$
$(\mathrm{A}==\mathrm{C})=1$

1.3 The $\operatorname{sizeof()}$ operator

In c++, the sizeof operator is used to determines the size of a variable or any data type. It is a compile-time operator which return the size of variable or data type in bytes.

Syntax:

sizeof(type);
int x ;
int $y=\operatorname{sizeof}(x)$;

Example:

```
#include<iostream.h>
    #include<conio.h>
    #include<math.h>
    main( )
    {
    cout << "Size of int : " << sizeof(int) << endl;
        cout << "Size of long int :" << sizeof(long int) << endl;
        cout << "Size of float:" << sizeof(float) << endl;
        cout << "Size of double : " << sizeof(double) << endl;
        cout << "Size of char : " << sizeof(char) << endl;
    getch();
```

 \}

Output:

Size of int : 4
Size of long int : 4
Size of float : 4
Size of double : 8
Size of char : 1

Example:

int i; char c;
cout << "Size of variable i : " << sizeof(i) \ll endl; cout << "Size of variable c : " << sizeof(c) << endl;
output: Size of variable $i: 4$, Size of variable c : 1

Most of the mathematical functions are declared in the <math.h> header file, as shown inthe table below :

Function	Description	Example
$\boldsymbol{\operatorname { s i n }}(\mathrm{x})$	sine of x (x in radians)	$\sin (2)$ returns 0.909297
$\boldsymbol{\operatorname { c o s }}(\mathrm{x})$	cosine of x (x in radians)	$\cos (2)$ returns -0.416147
$\boldsymbol{\operatorname { t a n }}(\mathrm{x})$	tangent of x (x in radians)	$\tan (2)$ returns -2.18504
$\operatorname{asin}(\mathbf{x})$	inverse sine of x (x in radians)	$\operatorname{asin}(0.2)$ returns 0.201358
$\operatorname{acos}(\mathbf{x})$	inverse cosine of x (x in radians)	$\operatorname{acos}(0.2)$ returns 1.36944
$\operatorname{atan}(\mathrm{x})$	inverse tangent of x (x in radians)	$\operatorname{atan}(0.2)$ returns 0.197396
$\log (\mathrm{x})$	natural logarithm of $x($ base e) $[\operatorname{Ln}(x)]$	$\log (2)$ returns 0.693147
$\log 10(\mathrm{x})$	common logarithm of x (base 10)	Logl0(2) returns 0.30103
sqrt(\mathbf{x})	square root of x	sqrt(2) returns 1.41421
pow(x,p)	x to the power p	pow (2,3) returns 8.0

```
Example:
        \#include<iostream.h>
        \#include<conio.h>
        \#include<math.h>
        int main()\{
        int \(x=2\);
        double result;
        result \(=\sin (x)\);
        cout << " \(\sin (\mathrm{x})=\) " << result << endl;
        getch ()\(;\}\)
```


output:

```
sin}(x)=-0.84147
```


Thank you

