Analytic Mechanics

Second lecture

Vector calculus and Kinematic of a particle

Dr. Nasma Adnan Jaber

Second Stage
Department of medical physics
Al-Mustaqbal University-College
2020-2021

1. Derivative of vector

Consider a vector $\overline{\mathbf{A}}$, whose components are functions of a single variable u. The vector may represent position, velocity, and so on. The parameter u is usually the time t , but it can be any quantity that determines the components of $\overrightarrow{\mathbf{A}}$:

$$
\vec{A}(u)=\hat{i} A_{x}(u)+\hat{j} A_{y}(u)+\hat{k}_{z}(u)
$$

Derivative of a vector is a vector whose components are ordinary derivatives

$$
\frac{\partial \vec{A}}{d u}=\hat{i} \frac{d A_{X}}{d u}+\hat{j} \frac{d A_{y}}{d u}+\hat{k} \frac{d A_{z}}{d u}
$$

**The derivative of the sum of two vectors is equal to the sum of the derivatives,

$$
\frac{d}{d u}(\vec{A}+\vec{B})=\frac{d \vec{A}}{d u}+\frac{d \vec{B}}{d u}
$$

** Derivative of products of vectors

$$
\begin{aligned}
& \frac{d(\overrightarrow{n A})}{d u}=\frac{d n}{d u} \vec{A}+n \frac{d \vec{A}}{d u} \\
& \frac{d(\vec{A} \cdot \vec{B})}{d u}=\frac{d \vec{A}}{d u} \cdot \vec{B}+\vec{A} \cdot \frac{d \vec{B}}{d u} \\
& \frac{d(\vec{A} \times \vec{B})}{d u}=\frac{d \vec{A}}{d u} \times \vec{B}+\vec{A} \times \frac{d \vec{B}}{d u}
\end{aligned}
$$

2. Position Vector of a Particle: Velocity and

Acceleration

The position of a particle can be specified by a single vector, the displacement of the particle relative to the origin of the coordinate system. This vector is called the position vector of the particle.

$$
\vec{r}=\hat{i x}+\hat{j y}+\hat{k z}
$$

** The velocity vector.
If the position vector for a particle $\overrightarrow{\boldsymbol{x}}$ and the parameter is the lime t the derivative of r with respect to t is called the velocity, which we shall denote by v :

$$
\vec{\nabla}=\frac{d \vec{r}}{d t}=\hat{i} \dot{x}+\hat{j} \dot{y}+\hat{\mathbf{k}}
$$

Where the dots indicate differentiation with respect to t. The magnitude of the velocity is called the speed. In rectangular components the speed is just

$$
v=|\vec{v}|=\left(\dot{x}^{2}+\dot{\dot{y}}^{2}+\dot{z}^{2}\right)^{\frac{1}{2}}
$$

**The acceleration vector

The time derivative of the velocity is called the acceleration. Denoting the acceleration with a,

$$
\stackrel{\rightharpoonup}{a}=\frac{\partial \stackrel{\rightharpoonup}{v}}{d t}=\frac{d^{2} \stackrel{\rightharpoonup}{r}}{d t^{2}}
$$

In rectangular components:

$$
\vec{a}=\hat{i} \ddot{x}+\hat{j} \ddot{y}+\hat{k} \ddot{z}
$$

Thus, acceleration is a vector quantity whose components, in rectangular coordinates, are the second derivatives of the positional coordinates of a moving particle.

Example: Projectile Motion

Let us examine the motion represented by the equation:

$$
\vec{r}(t)=\hat{i} b t+\hat{j}\left(c t-\frac{g t^{2}}{2}\right)+\hat{k} 0
$$

This represents motion in the $x-y$ plane, because the z component is constant and equal to zero. The velocity v is obtained by differentiating with respect to t, namely:

$$
\vec{\nabla}=\frac{d \vec{x}}{d t} \hat{i} \hat{i}+\hat{j}(c-g t)
$$

The acceleration, likewise, is given by:

$$
\vec{a}=\frac{\vec{d} \vec{v}}{d t}=-\hat{j} g
$$

Thus, a is in the negative y direction and has the constant magnitude g. The path of motion is a parabola, as shown in Figure.

The speed v varies with t according to the equation:

$$
\nabla=\left[b^{2}+(c-g t)^{2}\right]^{\frac{t}{2}}
$$

Example: Circular Motion

Suppose the position vector of a particle is given by:

$$
\vec{r}=\hat{I} b \sin \omega t+\hat{j b} \cos \omega t+\hat{k c}
$$

Where a , is a constant.
Let us analyze the motion. The distance from the origin remains constant:

$$
\begin{aligned}
|\vec{r}|=r & =\left(r^{2} \sin ^{2} \omega t+b^{2} \cos ^{2} \omega t+c^{2}\right)^{\frac{1}{3}} \\
& =\left(b^{2}+c^{2}\right)^{\frac{1}{3}}
\end{aligned}
$$

Differentiating r, we find the velocity vector:

$$
\stackrel{\rightharpoonup}{\nabla}=\frac{d \stackrel{\rightharpoonup}{r}}{d t}=\hat{i} b \omega \cos \omega t-\hat{j b} \omega \sin \omega t+\hat{k} 0
$$

The velocity vector is parallel to the $\mathrm{x}-\mathrm{y}$ Plane. The particle moves with constant speed:

$$
v=|\vec{v}|=\left(b^{2} \omega^{2} \cos ^{2} \omega t+b^{2} \omega^{2} \sin ^{2} \omega t\right)^{\frac{1}{2}}=b \omega
$$

The acceleration is:

$$
\stackrel{\rightharpoonup}{a}=\frac{\partial \stackrel{\rightharpoonup}{v}}{\partial t}=-\hat{i} b \omega^{2} \sin \omega t-\hat{j} b \omega^{2} \cos \omega t
$$

In this case the acceleration is perpendicular to the velocity, because the dot product of v and a vanishes:
$\vec{\nabla} \cdot \vec{a}=(b \omega \cos \omega t)\left(-b \omega^{2} \sin \omega t\right)+(-b \omega \sin \omega t)\left(-b \omega^{2} \cos \omega t\right)=0$

3. Vector integration

Suppose that the time derivative of a vector \mathbf{r} is given in rectangular coordinates where each component is known as a function of time, namely,

$$
\frac{d \vec{r}}{d t}=\hat{i} f_{1}(t)+\hat{j} f_{2}(t)+\hat{k} f_{3}(t)
$$

It is possible to integrate with respect to t to obtain

$$
\mathbf{r}=\mathbf{i} \int f_{1}(t) d t+\mathbf{j} \int f_{2}(t) d t+\mathbf{k} \int f_{3}(t) d t
$$

Example:

The velocity vector of a moving particle is given by:

$$
\stackrel{\rightharpoonup}{v}=\hat{i} \hat{A}+\hat{j} B t+\hat{k} C t^{-1}
$$

in which A, B, C are constants. Find r

$$
\begin{aligned}
\vec{r} & =\hat{i} \int A d t+\hat{j} \int B t \dot{d} t+\hat{k} \int C^{-1} d t \\
& =\hat{i} A t+\hat{j} B \cdot \frac{t^{2}}{2}+\hat{k} C \ln t+\vec{r}_{0}
\end{aligned}
$$

Where r_{o} is the constant of integration.

