Lecture 1

Third Stage

Quantum Mechanics

By

Eman Ahmed Abdulmunem Abdulkadhim

Operators

Any mathematical entity which act on a wave function and change it to another function.

Observables	Cla. Mech. Rep	Qua. Mech. Rep.
1-position	X	\widehat{X}
2-Momentum	$p_x = m\dot{x}$	$\widehat{p_x} = -i\hbar \frac{\partial}{\partial x}$
3- kinetic energy	$T = \frac{p^2}{2m}$	$\widehat{T} = \frac{\widehat{p^2}}{2m} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$
4- total energy	$E=T+V_{(x)}$	$\hat{E} = i\hbar \frac{\partial}{\partial t}$
5- Hamilton	$H = \frac{p^2}{2m} + V_{(x)}$	$\widehat{H} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_{(x)}$

Eigen functions and Eigen values

When an operators on a function the outcome is another functions.

Example:- by using the eigen value equation show that the function $\varphi_n(x)=e^{i4x}$ is an eigen function of the operator $\hat{A}=\frac{\partial}{\partial x}$

$$\hat{A} = \frac{\partial}{\partial x}$$
 $\varphi_n(x) = e^{i4x}$
 $\hat{A}\varphi_n(x) = a_n\varphi_n(x)$
 $\hat{A}\varphi_n(x) = \frac{\partial}{\partial}(e^{i4x})$
 $= i4e^{i4x}$
 $= a_n\varphi_n(x)$
 $a_n = i4 \ eigen \ value$

$$\varphi_n(x) = e^{i4x}$$
 eigenfunction

By using the eigen value equation show that the function $\varphi_n(x) = \sin(6x)$ is an eigen function of the operator $\widehat{A} = \frac{\partial^2}{\partial x^2}$ H.W.

Properties of operators

1-liner operator

$$i) \hat{A}(\varphi_1(x) + \varphi_2(x)) = \hat{A}\varphi_1 + \hat{A}\varphi_2$$
$$ii) \hat{A}(a\varphi_{(x)}) = a\hat{A}\varphi_{(x)}$$

2- Commutation

$$\hat{C} = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

$$i) \text{ if } \hat{C} = 0 \rightarrow [\hat{A}, \hat{B}] = 0$$

$$then \quad \hat{A}\hat{B} = \hat{B}\hat{A} \qquad commutation$$

$$ii) \text{ if } \hat{C} = 1$$

$$\hat{C} = Unit \text{ operator}$$

$$iii) \text{ if } \hat{C} \neq 0 \rightarrow [\hat{A}, \hat{B}] \neq 0$$

$$\hat{A}\hat{B} - \hat{B}\hat{A} \neq 0$$

$$then \quad \hat{A}\hat{B} \neq \hat{B}\hat{A} \quad not \text{ commutation}$$

Example:- prove that $\left[\frac{\partial}{\partial x}, x\right]$ is unit operator

$$\hat{C} = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

$$\hat{C} = \frac{\partial}{\partial x}x - x\frac{\partial}{\partial x} \quad \text{multiplyed } \varphi_x$$

$$\hat{C}\varphi_x = [\frac{\partial}{\partial x}x - x\frac{\partial}{\partial x}]\varphi_x$$

$$\hat{C}\varphi_x = \left[\frac{\partial}{\partial x}x(\varphi_x) - x\frac{\partial}{\partial x}(\varphi_x)\right]$$

$$= \varphi_{(x)}\frac{\partial x}{\partial x} + x\frac{\partial \varphi_{(x)}}{\partial x} - x\frac{\partial \varphi_{(x)}}{\partial x}$$

$$\hat{C}\varphi_x = \varphi_x$$

Then
$$C = \frac{\varphi_x}{\varphi_x}$$
 then $C = 1$

**show that
$$[\widehat{x}, \widehat{p_x}] = i\hbar$$
 H, W .

Hint
$$p_x = i\hbar \frac{\partial}{\partial x}$$

Hermitean operator

Operator \hat{A} is said to be hermition when satisfying the relation:

$$\int_{-\infty}^{\infty} \varphi_n^* \hat{A} \varphi_m d\tau = \int_{-\infty}^{\infty} \varphi_m (\hat{A} \varphi_n)^* d\tau$$

Properties of hermitean operator

- 1) the eigen value correspond to any hermitean operator are real quantities.
- 2) eigen function correspond to different eigen value are always orthogonal i.e.

$$\int\limits_{-\infty}^{\infty}\varphi_{n}^{*}\varphi_{m}d\tau=0$$

Example prove that P_x is hermitian operator?

$$A = \widehat{p_x}$$

$$\int_{-\infty}^{\infty} \varphi_n^* \hat{A} \varphi_m d\tau = \int_{-\infty}^{\infty} \varphi_m (\hat{A} \varphi_n)^* d\tau$$

$$\int_{-\infty}^{\infty} \varphi_n^* (-i\hbar \frac{\partial}{\partial x}) \varphi_m dx$$

$$-i\hbar \int_{-\infty}^{\infty} \varphi_n^* \frac{\partial}{\partial x} \varphi_m dx - - - - - 1$$

$$\int_{-\infty}^{\infty} u dv = uv_{-\infty}^{\infty} | - \int_{-\infty}^{\infty} v du$$

$$u = \varphi_n^* \qquad dv = \frac{\partial}{\partial x} \varphi_m dx$$

$$du = \frac{\partial \varphi_n^*}{\partial x} dx \qquad v = \varphi_m$$

$$= -i\hbar \varphi_n^* \varphi_m \frac{1}{-\infty} + i\hbar \int_{-\infty}^{\infty} \varphi_m \frac{\partial \varphi_n^*}{\partial x} dx$$

$$= i\hbar \int_{-\infty}^{\infty} \varphi_m \left(i\hbar \frac{\partial \varphi_n^*}{\partial x} \right) dx$$

$$= \int_{-\infty}^{\infty} \varphi_m \left(-i\hbar \frac{\partial \varphi_n}{\partial x} \right)^* dx$$

$$= \int_{-\infty}^{\infty} \varphi_m (p_x \varphi_n)^* dx$$