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Introduction to Quantum Theory: 

Before we dive into the Schrodinger equation and how it contributed to the quantum 

model of waves as well as quantum theory, it would be best to learn what exactly 

quantum theory and the history behind it. Going back to the 1900s, Max Planck 

hypothesized that all energy is quantized and that light exhibits wave-particle 

duality. By saying something like energy can be “quantized”, it is simply referring 

to the existence of electrons on specific energy levels. More importantly, this means 

that energy can only be absorbed and emitted with specific values, and not just any 

possible value. The quantum model below shows these quantum levels that exist at 

the subatomic level. 

https://classroom.google.com/c/MjQwMjM4NDM3MDc1/a/MjIwMjAyMjE3NDY5

/details 

 

Planck also came up with an equation that is still constantly used today in modern 

physics called the Planck postulate:  

E = hv (or) E = hf 



 

 

 

This equation restates that “photon energy (E) is proportional to its frequency (v/f) 

multiplied by Planck’s constant (h) which is equal to 6.626 x 10
-34

 Js” (Weisstein 2). 

This is important because if this quantum energy has a frequency, it also means that 

it must have a wavelength: 

E = hf 

f = 
 

 
 

E = 
  

 
 

This postulation of wave-duality for all particles was hypothesized by the 20
th
 

century French physicist Louis de Broglie. De Broglie extended the theorem by 

stating all matter also possessed wave-duality attributes, meaning that all matter is 

the world possesses a wavelength of sorts. The reason humans don’t see wave-like 

characteristics in everyday objects in the world is due to inverse relationship 

between wavelength (Λ) and mass (m). 

E = mc
2
 

E = hc/Λ 

Setting these 2 formulas equal to each other and solving for Λ: 

mc
2
 = hc/Λ 

Λ = h/mc 

The Schrodinger Equation 

Similar in classical mechanics, this formula is used to predict certain physical 

outcomes in a given system: 

F = ma 



 

 

 

As well as another formula that is used to determine the energy for an object in a 

given system: 

Etotal = Ekinetic + Epotential 

While the Schrodinger equation is written in different ways for certain reason, this 

form is consistent with the conservation of energy and is considered the “F=ma” and 

of quantum models: 

EΨ(x) = 
    

  
 
      

   
 + VΨ(x) 

The V in VΨ(x) is sometimes written as the potential energy of a function. The Ψ is 

the Greek symbol psi and known as the wave function, “which describes the 

probability of the quantum state of a particle in a system” (Cresser 171). So, if 

VΨ(x) is the potential energy of an electron, then that means = 
    

  
 
      

   
  must be 

the kinetic energy of the system. Deriving the formula for kinetic energy from the 

classical physics energy formula will give us this result: 

Et = Ek + Ep 

Et = 
 

 
mv

2
 + V 

For substituting momentum (p) in the equation: 

p = mv 

E = 
  

  
 + V 

The general form of the wave equation where e is a mathematical constant, k is the 

wave vector, ω is the angular frequency (since this is a three-dimensional 

plane/system): 



Ψ =          

 

 

Differentiating the equation gives us: 

  

  
 = ik          = ikΨ 

We differentiate here because the derivative of the wave function can help describe 

the change in the state of the system as it evolves over time. 

   

   
 = i

2
k

2          = -k
2
Ψ 

The De Broglie relationship, where ħ is the reduced Planck’s constant, is: 

k = 
 

 
 

And by substituting k into -k
2
Ψ: 

   

   
 = 

   

  
Ψ 

Multiplying    on both sides: 

-ħ 
   

   
 = p

2
Ψ 

Now multiplying Ψ into the energy formula where E = 
  

  
 + V, p

2
 will turn into p

2
Ψ 

and then setting that term equal to -ħ 
   

   
 : 

EΨ = 
   

  
 + VΨ 

EΨ = 
    

  
 
      

   
  + VΨ 

 

Interpreting the Schrodinger Equation 

The Schrodinger equation is not easy to interpret, but by breaking it down by 

comparing it to the classical physics energy equation, it might help us understand 



what this equation’s purpose is:  

 

 

Et = Ek + Ep 

EΨ = 
    

  
 
      

   
  + VΨ 

I put the 2 equations on top of each other to help with picturing the distinct 

similarities they have. Notice how both equations solve for the total energy of 

something, that something being in this case a particle in space. Also take note of 

how both equation of have 2 terms that add up to the total energy. Both of the 2 

terms in the equations parallel to kinetic and potential energy of a system. 

The wave function Ψ describes the probability of the quantum state of a particle in a 

system. In a 1-dimensional spinless particle, it’s state in the system is described by 

the wave function as: 

Ψ(x,t) 

Where x is the position and t is the time. Since the wave function only describes the 

probability of the position of the particle, it has all possibilities of being anywhere in 

the system at a given time. The probability density is another way of describing the 

relative likelihood that a value at any given sample in a space will be there. 

Similarly, in quantum mechanics, this function will give the probability amplitude 

of the particle from the wave function where p(x) is a probability density function: 

|Ψ(x,t)|
2
 = Ψ(x,t)* Ψ(x,t) = p(x,t) 

The probability that this particle will be at position x in the interval a ≤ x ≤ b is in 

the integral of the density: 

Pa≤x≤b(t) = ∫   
 

 
          

 



 

 

 

A probability is a real number between 0 and 1, 0 meaning it has a 0% chance of 

happening and 1 meaning it has a 100% chance of happening. Since there is a 100% 

that if the particle is observed and measured, it will be always be somewhere.  

This also means that a measurement of x must give a value between -∞ and +∞, and 

P-∞<x<∞ must equal 1: 

∫   
 

  

             

 

 

Take this graph to be a 1-dimensional space for example. By taking the integral of 

the equation, we can therefore say that there is a 100% chance that a particle will be 

found in the area under the graph (space) from intervals a ≤ x ≤ b. 

 

 

 

 

 


