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% Variance

The deviation in the measured of the operator A from its expected

value(A).
(VA)? = (A%) — (A)*
Example:
1. position
(Ax?) = (x?) — (x)"2
(x?) =j‘z”*x2‘z”dx
(x?) = (J P*x2@dx )2
2.Momentum

(Vpx)? = (px?) — (px)"2
(px?) = j‘l’*Px'de

(px?) = (f P*Px¥Wdx )2

Quantized states

Some dynamic quantities, such as energy and angular momentum, take for

themselves precisely distinct knowledge values and are said to be
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quantized. This behavior is impossible in most cases, because applying
the principles of quantum mechanics to a specific system often gives a
distribution of these values that we obtain as a result of measurements
(expected values). If there is a type of wave functions corresponding to
the case in which a dynamic quantity is fully knowing the value, these

functions full the following equation:

A¥Y=a¥

Where a is a real constant then the quantity A is fully defined by the

quantity a. To demonstrate this, we calculate the expected value:

(A) =.[‘P*A'Pdr

= j‘l’*a‘!’dr
= af‘l’*‘l’dr

«(A) =a

Likewise, the:

(A%) = j W A(AY)dt

= f Y*AaWdrt

N N TN N N N N N AN AN N N N N TN N N AN N N AN

NN N N NN X N N N N N N N N AN NN NN EANEENEENE

DesAeAEAEEAEEATEATAEEAENEEAEEAEEATNEENE A



e e e e e e e e Ve S
A 1
X
?<
Y =a f YV*A¥dt

=a j Y*a¥dt

= a? f Yrydr

( A2> = aZ

(VA)? = (4%) — (A)"2
= a® —a?=0

In other words, there is no doubt or truth about the value of A, but rather

that A is defined by the exact value a.

Parity

Wave functions are often characterized by an important role that plays a
fundamental role in physical phenomena, according to which the
functions have an even and odd symmetry with respect to the reflection in
coordinates at the point of origin.

_(P(—x) even parity}
P0)= {llf(x) odd parity

N N TN N N N N N AN AN N N N N TN N N AN N N AN

N N N AN AN N NN AN N NN AN N NN NN AN

DesAeAEAEEAEEATEATAEEAENEEAEEAEEATNEENE A



X

©

N N TN N N N N N AN AN N N N N TN N N AN N N AN

e e e e e e e e e e Ve e N
A
Example 1:
y(x) = sin x
y(-X) = sin (-x)

y(-x) = -sin (-x) = -y(X)

Example 2:
y(X) = cos x
y(-X) = cos (-x)

y(-X) = cos (x) = y(X)

If v (X) is symmetric, that is, v (-xX) = v (X) and the energy levels are not
dissolved, then all solutions to the time-dependent Schrodinger equation

take the two forms

Y(—x) =¥(x) As for

Y(—x) = -¥(x) or

Where as ¥ (x) the non-time dependent Schrodinger equation is
~ I v29(x) + v()¥(x) = E¥ ()
And when replacing x with - x

~ I g29(—x) + v(E)W(—x) = E¥(—x)
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ﬁ( Since ¥ (-x) , ¥ (X) achieve one differential equation, which is the

Schrddinger equation, which is not dependent on time, it must be

P(-X) = [P(X).oe... *

Where r, is constant and substituting x with -x
Y(X) = r,\¥Y(-x)

And using the equation *, we find that

Y(X) =1, 1y P(x)

PX) =2 P(Ex) ~——-> r=tl-1
Returning to the equation (*) and substituting for r,, is

P(-x) = + ¥(x)

In the case where ¥ (-x) = ¥ (x) the function is said to be an even
symmetry, while in the other case ¥( -x) = -¥ (x) it is said to have a odd

symmetry.

We can now define the reflection operator which has an effect on the

function x) ¥ is to replace x with —x

RY(x)= ¥(-X)
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f Reflection operator : is that operator when operate on such function

convert it around the origin i.e. R ¥(x)= ¥(-X)

With a simple modulation, the equation (*) can be written as follows

R¥Y(x) =1, P(x) = P(-X)

Where r, represents the eigenvalues of symmetry, and if we are now
influenced again by the operator R on both sides of the equation above, it

will be:
R) R ¥(x)) =R 1, ¥(x)
=, R¥(x)
=r,? ¥(x)
R) R ¥(x)) =R 1, ¥(x)
= ¥(x)
a=1 > r=F 1
That is, the eigenvalues of symmetry are + 1, which means that the wave

functions of symmetry are either even in x or odd, here r, = + 1 is the

eigenvalues of the operator, while ¥ (x) is the eigenvalue.
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2( Example :

If the operator H( X) the Hamiltonian operator is an even function in X i.e.
H(-x) = H (x) then prove that it is exchanged with the operator R

(reflection effect).
the proof
H R(X) ¥(x) =H (-x) ¥(-X)
=H (x) ¥(-X)
=H (x) R ¥(x)
Accordingly,

H) R(x) ¥(x)) =H (x) R ¥(x)

AR (X)- A (x) R ¥(x)=0

That is, the substitution C of the two operators H, equals zero
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