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Quantum Harmonic Oscillator 

A diatomic molecule vibrates somewhat like two masses on a spring with a potential 

energy that depends upon the square of the displacement from equilibrium. But the 

energy levels are quantized at equally spaced values. 

 

The energy levels of the quantum 

harmonic oscillator are 

 

and for a diatomic molecule the natural 

frequency is of the form 

 

where the reduced mass is given by 

 

This form of the frequency is the same as that for the classical simple harmonic 

oscillator. The most surprising difference for the quantum case is the so-called "zero-

point vibration" of the n=0 ground state. This implies that molecules are not completely 

at rest, even at absolute zero temperature. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibspe.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/pespr.html#pe2
http://hyperphysics.phy-astr.gsu.edu/hbase/pespr.html#pe2
http://hyperphysics.phy-astr.gsu.edu/hbase/orbv.html#rm
http://hyperphysics.phy-astr.gsu.edu/hbase/shm2.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/shm2.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc4.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc4.html#c1
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The quantum harmonic oscillator has implications far beyond the simple diatomic 

molecule. It is the foundation for the understanding of complex modes of vibration in 

larger molecules, the motion of atoms in a solid lattice, the theory of heat capacity, etc. 

In real systems, energy spacings are equal only for the lowest levels where the potential 

is a good approximation of the "mass on a spring" type harmonic potential. The 

anharmonic terms which appear in the potential for a diatomic molecule are useful for 

mapping the detailed potential of such systems. 

 

Quantum Harmonic Oscillator: Schrodinger Equation 

The Schrodinger equation for a harmonic oscillator may be obtained by using the 

classical spring potential 

 

The Schrodinger equation with this form of potential is 

 

Since the derivative of the wave function must give back the square of x plus a 

constant times the original function, the following form is suggested: 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/schr.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/pespr.html#pe
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Note that this form (a Gaussian function) satisfies the requirement of going to zero at 

infinity, making it possible to normalize the wave function. 

Substituting this function into the Schrodinger equation and fitting the boundary 

conditions leads to the ground state energy for the quantum harmonic oscillator: 

 

 

While this process shows that this energy satisfies the Schrodinger equation, it does 

not demonstrate that it is the lowest energy. One interesting way to show that is to 

demonstrate that that it is the lowest energy allowed by the uncertainty principle. 

The general solution to 

the Schrodinger 

equation leads to a 

sequence of evenly 

spaced energy levels 

characterized by a 

quantum number n. 
 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc4.html#c1
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The wavefunctions for the quantum harmonic oscillator contain the Gaussian form 

which allows them to satisfy the necessary boundary conditions at infinity. In the 

wavefunction associated with a given value of the quantum number n, the Gaussian 

is multiplied by a polynomial of order n called a Hermite polynomial. The 

expressions are simplified by making the substitution 

 

The general formula for the normalized wave functions is 

 

 

= Hermite polynomial 

 

 

 

The quantum harmonic oscillator is one of the foundation problems of quantum 

mechanics. It can be applied rather directly to the explanation of the vibration 

spectra of diatomic molecules, but has implications far beyond such simple systems. 

It is the foundation for the understanding of complex modes of vibration in larger 

molecules, the motion of atoms in a solid lattice, the theory of heat capacity, etc. In 

real systems, energy spacings are equal only for the lowest levels where the potential 

is a good approximation of the "mass on a spring" type harmonic potential. The 

anharmonic terms which appear in the potential for a diatomic molecule are useful 

for mapping the detailed potential of such systems. 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html#c1
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The solution of h.o. in the position representation : 

 

The Hamiltonian for the harmonic oscillator in one dimension is 

 

where ω is the angular frequency and m is the mass of the oscillator. The 

time-independent Schrödinger equation takes the form 

 

Typically, dimensionless parameters are introduced for the position 

coordinate and the energy 

The Schrödinger equation can then be rewritten as 

 

where ψ = ψ(u). Solutions to this equation can be obtained using the series 

method; we simply summarize them here. They are a product of an  
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exponential and a Hermite polynomial 

 

In terms of the position coordinate, the solution takes the form 

 

Here An is a normalization constant. 

 

* Normalization of the Hermite Polynomials 

The normalization of the wave functions comes from that of the Hermite  

polynomials. The orthonormality of the Hermite polynomials is written as: 
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Using this relationship, we can normalize the wave functions by integrating 

with the normalization constant 

To have a normalized wave function, this must be equal to unity and so we 

have 

 

We can then write the normalized wave function as 

 

The energy is found from the series solution technique applied to the 

Schrödinger equation. The termination condition for this solution dictates 

that the energy of state n is given by 

 

Helpful recursion relationships exist that can be used to derive higher-order 

Hermit polynomials. These include 

The first few Hermit polynomials are given by 
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The recursion relations can be useful for determining expectation values. 

1. For the harmonic oscillator system, the solution of the Schrödinger 

equation leads to the quantized energy )
2

1
( hVEV  . 

A. Define the zero-point energy of the system. 

The zero-point energy (ZPE) for a quantum mechanical system is 

defined as the lowest possible energy allowed. In the case of the 

harmonic oscillator, the energy depends on the quantum number v, and 

v = 0, 1, 2, 3, ….   

Thus,   .
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B. Determine the energy gap between state v + 1 and state v.  
 

     The energy gap between the state v + 1 and v can be calculated as 
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 It is worth noting that the energy gap is related to the frequency of 

molecular vibration (see Unit 7, Section 3 later). 

 

2. For the harmonic oscillator, the solution of the Schrödinger equation 

leads to the ground state wave function 2/4/1
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