1.1 What is Matrices?

a matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns and each item in a matrix are called its elements or entries.

For example, the dimensions of the matrix below are $\mathbf{2 \times 3}$ (read "two by three"), because there are two rows and three columns.

$$
\left[\begin{array}{ccc}
1 & 9 & -13 \\
20 & 5 & -6
\end{array}\right]
$$

1.2 Entering Elements to Matrices

1.3 Operations on Matrices

Once you are able to create a matrix, we can perform many standard operations on it such as summation, subtraction, multiplication, division and inverse of a matrix. All these operations can be made easily using Matlab program.

1.3.1 Matrices Summations (+)

Two matrices must have an equal number of rows and columns to be added. The sum of two matrices \mathbf{A} and \mathbf{B} will be a matrix which has the same number of rows and columns as do \mathbf{A} and \mathbf{B}. The sum of \mathbf{A} and \mathbf{B}, denoted $\mathbf{A}+\mathbf{B}$, is computed by adding corresponding elements of \mathbf{A} and \mathbf{B}.

$$
\left[\begin{array}{ll}
1 & 3 \\
1 & 0 \\
1 & 2
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
7 & 5 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1+0 & 3+0 \\
1+7 & 0+5 \\
1+2 & 2+1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
8 & 5 \\
3 & 3
\end{array}\right]
$$

1.3.2 Matrices Subtractions (-)

We can also subtract one matrix from another, as long as they have the same dimensions. $\mathbf{A}-\mathbf{B}$ is computed by subtracting corresponding elements of \mathbf{A} and \mathbf{B}, and has the same dimensions as \mathbf{A} and \mathbf{B}.

$$
\left[\begin{array}{ll}
1 & 3 \\
1 & 0 \\
1 & 2
\end{array}\right]-\left[\begin{array}{ll}
0 & 0 \\
7 & 5 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1-0 & 3-0 \\
1-7 & 0-5 \\
1-2 & 2-1
\end{array}\right]=\left[\begin{array}{cc}
1 & 3 \\
-6 & -5 \\
-1 & 1
\end{array}\right]
$$

Next we will use matlab program in matrices subtractions and notice the resultus obtained from it.

```
Command Window
\(\gg \%\) By Defining the Matrix \(A\)
\(\gg A=[12 ; 46 ; 98]\);
\(\gg \%\) By Defining the Matrix B
\(\gg \mathrm{B}=[04 ; 3\) 9;37];
\(\gg \% \mathrm{C}=\mathrm{A}-\mathrm{B}\)
\(\gg \mathrm{C}=\mathrm{A}-\mathrm{B}\)
\(\mathrm{C}=\)
    1 -2
    1 -3
61
```


1.3.3 Matrices Multiplication (*)

In order to multiply two matrices, \mathbf{A} and \mathbf{B}, the number of columns in \mathbf{A} must equal the number of rows in \mathbf{B}.

$$
\mathbf{A B}=\left[\begin{array}{lll}
1 & 0 & -2 \\
0 & 3 & -1
\end{array}\right]\left[\begin{array}{rr}
0 & 3 \\
-2 & -1 \\
0 & 4
\end{array}\right]
$$

\checkmark You can use this fact to check quickly whether a given multiplication is defined. Write the product in terms of the matrix dimensions. In the case of the above problem, \mathbf{A} is $\mathbf{2 \times 3}$ and \mathbf{B} is $\mathbf{3 \times 2}$, so $\mathbf{A B}$ is($\mathbf{2 \times 3} \mathbf{3}(\mathbf{3} \times \mathbf{2})$. The middle values match:

\checkmark The multiplication is defined, the product matrix 2×2. You can also see this on the dimensions

\checkmark Using this, you can see that $\mathbf{B A}$ must be a different matrix from $\mathbf{A B}$, because:
product is defined

Next we will use matlab program in matrices multiplications and notice the resultus obtained from it.

```
Command Window
>> By defining the Matrix A.
>> A=[[1 2;4 6;9 8}]
>% By Defining the Matrix B
>> B}=[\begin{array}{llllll}{0}&{3}&{3:4}&{9}&{7}\end{array}]
>> % C=A*B
C=A*B
```


1.3.4 Matrices Division and Inverse

For matrices, there is no such thing as division. You can add, subtract, and multiply matrices, but you cannot divide them. There is a related concept, though, which is called 'inversion''.

*The inverse of a 2×2 matrix

In the case of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ a simple formula exists to find its inverse:

$$
\text { if } \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { then } \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Example

Find the inverse of the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)$.

Solution

Using the formula

$$
\begin{aligned}
A^{-1} & =\frac{1}{(3)(2)-(1)(4)}\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)
\end{aligned}
$$

This could be written as

$$
\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
-2 & \frac{3}{2}
\end{array}\right)
$$

*The inverse of a $\mathbf{3} \times \mathbf{3}$ matrix

Before you work through this leaflet, you will need to know how to find the determinant and cofactors of a 3×3 matrix.

$$
A=\left(\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right) \quad C=\left(\begin{array}{ccc}
-2 & 3 & 9 \\
8 & -11 & -34 \\
-5 & 7 & 21
\end{array}\right)
$$

In order to find the inverse of A, we first need to use the matrix of cofactors, C , to create the adjoint of matrix A . The adjoint of A , denoted $\operatorname{adj}(\mathrm{A})$, is the transpose of the matrix of cofactors:

$$
\operatorname{adj}(A)=C^{T}
$$

Remember that to find the transpose, the rows and columns are interchanged

$$
\operatorname{adj}(A)=C^{T}=\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)
$$

Then the formula for the inverse matrix is

Given a matrix A, it inverse is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

where $\operatorname{det}(A)$ is the determinant of A, and $\operatorname{adj}(A)$ is the adjoint of A.

- The inverse has the special property that

$$
A A^{-1}=A^{-1} A=I \quad \text { (an identity matrix) }
$$

Example

Find the inverse of $A=\left(\begin{array}{ccc}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right)$.

Solution

We already have that $\operatorname{adj}(A)=\left(\begin{array}{ccc}-2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21\end{array}\right)$.
In an earlier leaflet, the determinant of this matrix A was found to be 1 . So

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{1}\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)
$$

You should verify this is correct by showing that $A A^{-1}=A^{-1} A=I$, the 3×3 identity matrix.

Properties of Matrices

Property

Commutativity of Addition
Associativity of Addition
Associativity of Scalar Multiplication
Scalar Identity
Distributive
Associativity of Multiplication
Multiplicative Identity

Example

$A+B=B+A$
$A+(B+C)=(A+B)+C$
(cd) $A=c(d A)$
$1 \mathrm{~A}=\mathrm{A}(1)=\mathrm{A}$
$C(A+B)=C A+C B$
$A(B C)=(A B) C$
$I A=A I=A$

