ANALYTICAL CHEMISTRY

Chemical Engineering Department

 First Glass / First Term AI-Mustaqbal collage By zainab salam obaid assist. Teach
LECTURE One

Solutions : Homogenous mixture for two or more substances, one of them called solute and the other one is the solvent .
\# The solute is an active substance in reaction and the solvent is active.
\# There are many solutions formed by dissolving gasses in liquids like CO_{2} in water .
\# Homogenous solution : Apartial homogenous mixing for two or more substances that will not react chemically with each other.
\# Hetrogenous solution : Represent with suspended and colloidal
solution.
\# Aqueous solution : is the solution in which water is the solvent .
\# Nonaqueous solution : when the solvent is any substance except water.

Classification of solutions are depends upon:
a) nature of molecules (or the volume of atoms or molecules of solute) ,these solutions are :

1) True solution.
2) Suspended solution.
3) Colloidal solution.
b) solute concentration in solution, it can be classified into :
4) saturated solution.
5) unsaturated solution.
6) super saturated solution.

Units of weight and concentration:

Concentration of solution : is the weight of solute dissolved in a given amount (volume or weight) of solvent.

Weight of solute can be expressed by :

1) physical units, e.g. gram(g), milligram(mg), kilogram(kg).
2) chemical units:- includes ,
a) g - atomic weight.
b) g - molecular weight.
c) g - formula weight.
d) g - ionic weight.
e) g - equivalent weight.

Mole : is the summation of the atomic weight in grams for all of the atoms in the chemical formula for the species,.
No. of moles $=\mathrm{Mw}(\mathrm{g}) / \mathrm{M} . \mathrm{wt}(\mathrm{g} / \mathrm{m})$

Methods for the expression of concentration of solutions :

There are several methods for express the concentration of solutions:

1) Molarity (M): moles of solute contained in one liter of solution or $\mathrm{mol} / \mathrm{L}$ or $\mathrm{ml} . \mathrm{mol} / \mathrm{ml}$
2) Normality (\mathbf{N}) : number of g-equivalent weight of solute that are contained in a liter of solution.

General principles to calculate the equivalent weight :

a) for acids :

$$
\text { eq.wt of acid }=\frac{\text { M.wt of acid }}{\text { no.of } H+\text { active }}
$$

There are many types of acids :

1) mono basic acid: $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{HF}, \ldots \ldots . . .$. ect
2) di basic acid: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{3}, \ldots \ldots \ldots .$. ect.
3) tri bacic acid: $\mathrm{H}_{3} \mathrm{PO}_{4}$, ect.

بتنمد حسـاب الوزن المكافئ على النفاعل الذي بدخل بـه المركب الكيمبـائي ، فقد يحدث ان بفقد الحامض H+ واحدة اثناء الثفاعل لذلك بقسم الوزن الجزيئي على ال ، او فد بستهلك 3H+

اذن بـتمد الحساب على معادلة النفاعل الكيمبائي وكم بسنتهلك من H+ في التفاعل

b) for base :

eq.wt of acid $=\frac{\text { M.wt of base }}{\text { no.of OH- active }}$

$$
\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

eq.wt. of $\mathrm{NH}_{4} \mathrm{OH}=\frac{\text { M.wt of } \mathrm{NH} 4 \mathrm{OH}}{\text { no.of } \mathrm{OH}-\text { active }}=\frac{35}{1}=35$

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

eq.wt.of $\mathrm{Ca}(\mathrm{OH})_{2}=$ \qquad

d) for salts :

eq.wt of salt $=\frac{\text { M.wt of salt }}{\text { no.of positive ion or no.of negative ion }}$

$$
\mathrm{Ag}^{+} \mathrm{NO}_{3}^{-}+\mathrm{H}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{Ag}^{+} \mathrm{Cl}^{-}+\mathrm{H}^{+} \mathrm{NO}_{3}^{-}
$$

eq.wt. of $\mathrm{Ag}^{+} \mathrm{NO}_{3}{ }^{-}=\frac{\text { M.wt of } \mathrm{Ag}+\mathrm{NO} 3-}{1}$
eq.wt. of $\mathrm{Ag}_{2}{ }^{+} \mathrm{O}^{-2}=\frac{\text { M.wt }}{2}$
eq.wt. of $\mathrm{Al}^{+3} \mathrm{PO}_{4}^{-3}=\frac{\text { M.wt }}{3}$
eq.wt. of $\mathrm{Ca}_{3}{ }^{+2}\left(\mathrm{PO}_{4}\right)_{2}{ }^{-3}=\frac{\text { M.wt }}{6}$

f) for complex ion:

eq.wt. of complex ion $=\frac{\text { M.wt }}{\text { no.of charges }}$

$$
\mathrm{Ag}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}^{-}
$$

eq.wt. of $\mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}^{-}=\frac{\text { M.wt }}{1}$

$$
\mathrm{Cu}^{+2}+4 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{-2}
$$

eq.wt. of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{-2}=\frac{\text { M.wt }}{2}$

