Tutorial sheet 2

Q.1/Assuming that $\Delta \mathrm{H}$ is independent of temperature for the following pyrolysis reaction : $\mathrm{C}_{2} \mathrm{H}_{6}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$

1) Estimate the fractional conversion at $1000^{\circ} \mathrm{C}$ and 1.5 atm

Component	$\Delta \mathrm{G}^{\circ}{ }_{298}(\mathrm{~kJ} / \mathrm{mol})$	$\Delta \mathrm{H}^{\circ}{ }_{298}(\mathrm{kj} / \mathrm{mol})$	$\mathrm{Cp}(\mathrm{kJ} / \mathrm{mol} . \mathrm{K})$
$\mathrm{C}_{2} \mathrm{H}_{6}$	-32.886	-84.667	$0.0096+8.73 \times 10^{-5} \mathrm{~T}$
$\mathrm{C}_{2} \mathrm{H}_{4}$	68.124	52.3	$0.0117+12.5 \times 10^{-5} \mathrm{~T}$
H_{2}	0	0	$0.0289+1.67 \times 10^{-5} \mathrm{~T}$

Q.2/ A stoichiometric mixture of N 2 and H 2 is to be brought to equilibrium at 600 atm pressure for the reaction $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2}=\mathrm{NH}_{3}$, at 373 K . the equilibrium constant $\mathrm{K}=3.4 \times 10^{-3}$, from the thermodynamic data. Estimate the fractional conversion assuming 1) ideal gas mixture 2) non - ideal gas.
Q.3/ The equilibrium constant for the reaction $\mathrm{SO} 2+1 / 2 \mathrm{O} 2=\mathrm{SO} 3$ at 1000 K is $K p=1.85$. What is the ration $\mathrm{P}_{\mathrm{so3}} / \mathrm{P}_{\text {so2: }}$:
a) when the partial pressure of oxygen at equilibrium is 0.3 bar.
b) a) when the partial pressure of oxygen at equilibrium is 0.6 bar.
Q.4/ A gaseous mixture containing $60 \% \mathrm{H}_{2}, 20 \% \mathrm{~N}_{2}$ and 20% inert gas is passed over a catalyst at 500atm pressure to produce ammonia. Estimate the maximum conversion if $K_{p}=0.0125$ for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}$, and the system behaves ideally.
Q.5/ at $400^{\circ} \mathrm{C}$ and total pressure of 10 atm, ammonia is dissociated to extent of 98%. Calculate K_{p}, K_{y} and K_{c} for the reaction $2 \mathrm{NH}_{3}=\mathrm{N}_{2}+3 \mathrm{H}_{2}$.
Q.6/ one method for the production of hydrogen cyanide is by the gas phase nitrogenation of acetylene according to the reaction
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCN}_{(\mathrm{g})}$
The feed to the reactor in which the above reaction takes place contains gaseous N 2 and $\mathrm{C}_{2} \mathrm{H}_{2}$ in their stoichiometric proportions. The reaction temperature is controlled at $300^{\circ} \mathrm{C}$. estimate the product composition if the reactor pressure is 1 atm. At $300^{\circ} \mathrm{C} \Delta \mathrm{G}^{\circ}$ for the reaction is 7190 cal .

Solved Problem

A gas mixture of $25 \mathrm{~mol} \% \mathrm{CO}_{2}$ and $75 \mathrm{~mol} \% \mathrm{CO}$ is mixed with the stoichiometric H_{2} for the following reactions:
$\mathrm{CO}_{2}+3 \mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}=2.82 \times 10^{-6}$
$\mathrm{CO}+2 \mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{OH}$

$$
\mathrm{K}=2 \times 10^{-5}
$$

The conversion to equilibrium is affected in the presence of a catalyst at 300 atm pressure. Assuming the behavior to remain ideal, calculate the fractional conversion for each reaction and hence the composition of the equilibrium mixture.

Solution: Basis: 1 mol feed of mix.
Let $\mathrm{X} 1=$ moles of CO_{2} reacted in the $1^{\text {st }}$ reaction
$\mathrm{X} 2=$ moles of CO reacted in the $2^{\text {nd }}$ reaction

$$
\mathrm{CO}_{2}+3 \mathrm{H}_{2}=\quad \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{~K}=2.82 \times 10^{-6}
$$

In:
0.25
0.75
00

React: X1 3X1 0
Out: $\quad 0.25-\mathrm{X} 1 \quad 0.75-3 \mathrm{X} 1 \quad \mathrm{X} 1 \quad \mathrm{X} 1$
$\Delta n=2-4=-2$

$$
\mathrm{CO}+2 \mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{OH} \quad \mathrm{~K}=2 \times 10^{-5}
$$

In:

0.75

1.5

0

React: X2 2X2 0
Out: $\quad 0.75-\mathrm{X} 2 \quad 1.5-2 \mathrm{X} 2 \quad \mathrm{X} 2$
$\Delta n=1-3=-2$

At equilibrium:
$\mathrm{CO}_{2}=0.25-\mathrm{X} 1, \quad \mathrm{CO}=0.75-\mathrm{X} 2, \mathrm{H}_{2}=2.25-3 \mathrm{X} 1-2 \mathrm{X} 2$,
$\mathrm{CH}_{3} \mathrm{OH}=\mathrm{X} 1+\mathrm{X} 2 \quad, \mathrm{H}_{2} \mathrm{O}=\mathrm{X} 1$
Tot. moles at eq ${ }^{\mathrm{n}}=3 \cdot 25-2 \times 1-2 \mathrm{X} 2$
$K_{P}=K_{y} P_{T}{ }^{\Delta n}$
$2.82 \times 10^{-6}=\frac{\left(\frac{X 1+X 2}{3.25-2 X 1-2 X 2}\right)\left(\frac{X 1}{3.25-2 X 1-2 X 2}\right)}{\left(\frac{0.25-X 1}{3.25-2 X 1-2 X 2}\right)\left(\frac{2.25-3 X 1-2 X 2}{3.25-2 X 1-2 X 2}\right)^{3}}(300)^{-2}$

$$
\begin{equation*}
0.2538=\frac{(X 1+X 2)(X 1)}{\frac{(0.25-X 1)(2.25-3 X 1-2 X 2)^{3}}{(3.25-2 X 1-2 X 2)^{2}}} \tag{1}
\end{equation*}
$$

$\frac{0.2538(0.25-X 1)(2.25-3 X 1-2 X 2)}{X 1}=\frac{(X 1+X 2)(3.25-2 X 1-2 X 2)^{2}}{(2.25-3 X 1-2 X 2)^{2}}$
For The $2^{\text {nd }}$ Reaction ;

$$
\begin{equation*}
2 X 10^{-5}=\frac{\frac{(X 1+X 2)}{(3.25-2 X 1-2 X 2)}}{\left(\frac{0.75-X 2}{3.25-2 X 1-2 X 2}\right)\left(\frac{2.25-3 X 1-2 X 2}{3.25-2 X 1-2 X 2}\right)^{2}}(300)^{-2} \tag{2}
\end{equation*}
$$

$1.8=\frac{(X 1+X 2)}{\frac{(0.75-X 2)\left(2.25-3 X 1-2 X 2^{2}\right)}{(3.25-2 X 1-2 X 2)^{2}}}$
$1.8\left(0.75-X 2=\frac{(X 1+X 2)(3.25-2 X 1-2 X 2)^{2}}{(2.25-3 X 1-2 X 2)^{2}}-\cdots\right.$
Eq.1=Eq. 3
$1.8(0.75-\mathrm{X} 2)=0.2538(0.25-\mathrm{X} 1)(2.25-3 \times 1-2 \times 2)$
$5.319 \times 1-7.09 \times 1 \times 2=0.5625-0.75 \times 1-0.5 \times 2-2.25 \times 1+3 \times 1^{2}+2 \times 1 \times 2$
$3 \times 1^{2}-9.319 \times 1+0.5625=0.5 \times 2-9.09 \times 1 \times 2$
$X 2=\frac{3 X 1^{2}-8.319 X 1+0.5625}{0.5-9.09 X 1}---(4)$ Sub. X2 in Eq.(2) and after some steps we get

$$
\begin{aligned}
& 1.6875-5.4 X 12+2.7 X 1 \\
& =\frac{\left(0.5625-7.82 X 1-6.09 X 1^{2}\right)\left(0.5-13.9 X 1+12.18 X 1^{2}\right)}{0.5625-5.31 X 1+21.27 X 1^{2}}
\end{aligned}
$$

By trial and error
Assume X1=0.1 $1.9035 \neq 0.882$
$\mathrm{X} 1=0.15 \quad 1.971 \neq 4$
$\mathrm{X} 1=0.05 \quad 1.8 \neq-0.073$
$\mathrm{X} 1=0.11 \quad 1.91916 \neq 1.3888$
$\mathrm{X} 1=0.12 \quad 1.934 \neq 1.987$
$X 1=0.17 \quad 1.929 \neq 1.7995$
$X 1=0.119 \quad 1.932 \neq 1.924$
$X 1=0.1192 \quad 1.9334 \neq 1.9364$
so, $\quad \mathrm{X} 1=0.1191$ which is the mole of CO_{2} reacted

$$
\mathrm{X} 2=\frac{3(0.1191)^{2}-8.319(0.1191)+0.5625}{0.5-9.09(0.1191)}
$$

$\mathrm{X} 2=0.662$ which is the mole of CO reacted
Fractional conversion $1^{\text {st }}$ reaction $=\frac{0.1191}{0.25}=0.4764$
Fractional conversion $2^{\text {nd }}$ reaction $=\frac{0.662}{0.75}=0.8827$
Moles at eq ${ }^{\text {n }}$: substitute $\mathrm{X} 1 \& \mathrm{X} 2$ for each component:
$\mathrm{CO}_{2}=0.25-\mathrm{X} 1=0.1309, \quad \mathrm{CO}=0.75-\mathrm{X} 2=0.088, \mathrm{H}_{2}=2.25-3 \mathrm{X} 1-2 \mathrm{X} 2=0.5687$,
$\mathrm{CH}_{3} \mathrm{OH}=\mathrm{X} 1+\mathrm{X} 2=0.1191+0.662=0.7811, \mathrm{H}_{2} \mathrm{O}=\mathrm{X} 1=0.1191$

