Tutorial sheet 2

Q.1/ Assuming that ΔH is independent of temperature for the following pyrolysis reaction : $C_2H_6 = C_2H_4 + H_2$

Component	ΔG^{o}_{298} (kJ/mol)	ΔH^{o}_{298} (kj/mol)	Cp(kJ/mol.K)				
C_2H_6	-32.886	-84.667	0.0096+8.73X10 ⁻⁵ T				
C ₂ H ₄	68.124	52.3	0.0117+12.5X10 ⁻⁵ T				
H ₂	0	0	0.0289+1.67X10 ⁻⁵ T				

1) Estimate the fractional conversion at 1000°C and 1.5 atm

Q.2/ A stoichiometric mixture of N2 and H2 is to be brought to equilibrium at 600 atm pressure for the reaction $1/2N_2 + 3/2H_2 = NH_3$, at 373 K. the equilibrium constant K=3.4x 10^{-3} , from the thermodynamic data. Estimate the fractional conversion assuming 1) ideal gas mixture 2) non - ideal gas.

Q.3/ The equilibrium constant for the reaction SO2 + 1/2 O2 =SO3 at 1000 K is Kp= 1.85.What is the ration P_{SO3} / P_{SO2}:

a) when the partial pressure of oxygen at equilibrium is 0.3 bar.

b) a) when the partial pressure of oxygen at equilibrium is 0.6 bar.

Q.4/ A gaseous mixture containing $60\%H_2$, $20\%N_2$ and 20% inert gas is passed over a catalyst at 500atm pressure to produce ammonia. Estimate the maximum conversion if $K_p = 0.0125$ for the reaction $N_2 + 3H_2 = 2NH_3$, and the system behaves ideally.

Q.5/ at 400 °C and total pressure of 10 atm, ammonia is dissociated to extent of 98%. Calculate K_p , K_y and K_c for the reaction $2NH_3 = N_2 + 3H_2$.

Q.6/ one method for the production of hydrogen cyanide is by the gas phase nitrogenation of acetylene according to the reaction

 $N_{2(g)} + C_2H_{2(g)} \longrightarrow 2HCN_{(g)}$

The feed to the reactor in which the above reaction takes place contains gaseous N2 and C₂H₂ in their stoichiometric proportions. The reaction temperature is controlled at 300 °C. estimate the product composition if the reactor pressure is 1 atm. At 300°C Δ G° for the reaction is 7190cal.

Solved Problem

A gas mixture of 25 mol% CO_2 and 75 mol% CO is mixed with the stoichiometric H_2 for the following reactions:

CO₂+3 H₂= CH₃OH +H₂O K= $2.82x \ 10^{-6}$ CO+2 H₂ = CH₃OH K= $2x \ 10^{-5}$

The conversion to equilibrium is affected in the presence of a catalyst at 300 atm pressure. Assuming the behavior to remain ideal, calculate the fractional conversion for each reaction and hence the composition of the equilibrium mixture.

Solution: Basis: 1 mol feed of mix.

Al-Mustaqbal University College

Let X1 =moles of CO_2 reacted in the 1st reaction

X2= moles of CO reacted in the 2nd reaction

	CO ₂ +3	3 H ₂ =	CH	3OH +	H ₂ O	K= 2.82x 10 ⁻⁶
ln:	0.25	0.75		0	0	
React:	X1	3X1		0	0	
Out:	0.25-X1	0.75-3	3X1	X1	X1	
∆n= 2-4=-2						
	$CO + 2H_2 = CH_3OH$					K= 2x 10 ⁻⁵
ln:	0.75	1.5	0			
React:	X2	2X2	0			
Out:	0.75-X	2 1.5-2	X2	X2		
Δn= 1-3=-2						

At equilibrium:

CO₂= 0.25 -X1, CO=0.75-X2 , H₂=2.25-3X1-2X2,

 $CH_3OH=X1+X2$, $H_2O=X1$

Tot. moles at $eq^{n} = 3.25-2X1-2X2$

 $K_P = K_V P_T^{\Delta n}$

$$2.82x10^{-6} = \frac{\left(\frac{X1+X2}{3.25-2X1-2X2}\right)\left(\frac{X1}{3.25-2X1-2X2}\right)}{\left(\frac{0.25-X1}{3.25-2X1-2X2}\right)\left(\frac{2.25-3X1-2X2}{3.25-2X1-2X2}\right)^{3}} (300)^{-2}$$
$$0.2538 = \frac{(X1+X2)(X1)}{\frac{(0.25-X1)(2.25-3X1-2X2)^{3}}{(3.25-2X1-2X2)^{2}}}$$

 $\frac{0.2538(0.25-X1)(2.25-3X1-2X2)}{X1} = \frac{(X1+X2)(3.25-2X1-2X2)^2}{(2.25-3X1-2X2)^2} -\dots -(1)$

For The 2nd Reaction ;

$$2X10^{-5} = \frac{\frac{(X1+X2)}{(3.25-2X1-2X2)}}{\left(\frac{0.75-X2}{3.25-2X1-2X2}\right)\left(\frac{2.25-3X1-2X2}{3.25-2X1-2X2}\right)^2} (300)^{-2}$$

$$1.8 = \frac{(X1+X2)}{\frac{(0.75-X2)(2.25-3X1-2X2^2)}{(3.25-2X1-2X2)^2}} -----(2)$$

$$1.8(0.75 - X2) = \frac{(X1+X2)(3.25-2X1-2X2)^2}{(2.25-3X1-2X2)^2} -----(3)$$

Eq.1=Eq.3

1.8(0.75-X2)=0.2538(0.25-X1)(2.25-3X1-2X2)

5.319X1-7.09X1X2=0.5625-0.75X1-0.5X2-2.25X1+3X1²+2X1X2

3X1²-9.319X1+0.5625=0.5X2-9.09X1X2

 $X2 = \frac{3X1^2 - 8.319X1 + 0.5625}{0.5 - 9.09X1}$ Sub. X2 in Eq.(2) and after some steps we get

$$1.6875 - 5.4X12 + 2.7X1$$

=
$$\frac{(0.5625 - 7.82X1 - 6.09X1^2)(0.5 - 13.9X1 + 12.18X1^2)}{0.5625 - 5.31X1 + 21.27X1^2}$$

By trial and error

Assume X1=0.1	1.9035≠ 0.882			
X1=0.15	1.971 ≠ 4			
X1= 0.05	1.8 ≠ -0.073			
X1 = 0.11	1.91916≠1.3888			
X1=0.12	1.934≠1.987			
X1=0.17	1.929≠1.7995			
X1= 0.119	1.932≠1.924			
X1=0.1192	1.9334 ≠1.9364			

so, X1 = 0.1191 which is the mole of CO_2 reacted

$$X2 = \frac{3(0.1191)^2 - 8.319(0.1191) + 0.5625}{0.5 - 9.09(0.1191)}$$

X2= 0.662 which is the mole of CO reacted

Fractional conversion 1st reaction= $\frac{0.1191}{0.25} = 0.4764$ Fractional conversion 2nd reaction= $\frac{0.662}{0.75} = 0.8827$

Moles at eq^{<u>n</u>}: substitute X1 &X2 for each component:

 $CO_2 = 0.25 - X1 = 0.1309$, CO = 0.75 - X2 = 0.088, $H_2 = 2.25 - 3X1 - 2X2 = 0.5687$, $CH_3OH = X1 + X2 = 0.1191 + 0.662 = 0.7811$, $H_2O = X1 = 0.1191$