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The Reversible Process 

A process is reversible when its direction can be reversed at any point by an 

infinitesimal change in external conditions. A reversible process: 

• Ideal 

• Is frictionless 

• Traverses a succession of equilibrium states 

• Is driven by forces whose imbalance is differential in magnitude 

• Can be reversed at any point by a differential change in external conditions 

• When reversed, retraces its forward path, and restores the initial state of 

system and surroundings. 

 The work of compression or expansion of a gas caused by the differential 

displacement of a piston in a cylinder. 

𝑑𝑊 =  −𝑃𝑑𝑉𝑡 

The work done on the system is given by this equation only when certain 

characteristics of the reversible process are realized. The first requirement is 

that the system be no more than infinitesimally displaced from a state of internal 

equilibrium characterized by uniformity of temperature and pressure. The 

system then always has an identifiable set of properties, including pressure P. 

The second requirement is that the system be no more than infinitesimally 

displaced from mechanical equilibrium with its surroundings. In this event, the 

internal pressure P is never more than minutely out of balance with the external 

force, and we may make the substitution 𝐹 =  𝑃𝐴 that transforms Eq. (1.1) into 

Eq. (1.2). Processes for which these requirements are met are said to be 

mechanically reversible, and Eq. (1.2) may be integrated: 
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W = − ∫ PdV

V2

V1

 

 

Irreversible process: A process in which it is impossible to return both the 

system and surroundings to their original states. The work of an irreversible 

process is calculated by a two-step procedure. First, W is determined for a 

mechanically reversible process that accomplishes the same change of state as 

the actual irreversible process. Second, this result is multiplied or divided by an 

efficiency to give the actual work. If the process produces work, the absolute 

value for the reversible process is too large and must be multiplied by 

efficiency. If the process requires work, the value for the reversible process is 

too small and must be divided by efficiency. 

W
irr.

= W
rev. 

* efficiency                  if the process produces work 

W
irr.

= W
rev.

/ efficiency                    if the process requires work  
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Example  

A horizontal piston/cylinder arrangement is placed in a constant-temperature 

bath. The piston slides in the cylinder with negligible friction, and an external 

force holds it in place against an initial gas pressure of the 14 bar. The initial 

gas volume is 0.03 m3. The external force on the piston is reduced gradually, 

and the gas expands isothermally as it volume doubles. If the volume of the gas 

is related to its pressure so that the product PV is  constant, what is the work 

done by the gas in moving the external force? 

    How much work would be done if the external force were suddenly reduced 

to the half its initial value instead of the being gradually reduced? 

 

Solution  

The process carried out as first described is mechanically reversible 

𝑤 = − ∫ 𝑃𝑑𝑣
𝑣2

𝑣1

 

PV is constant and let say is equal K     → ∴ 𝑃𝑉 = 𝐾 →           ∴ 𝑃 =
𝐾

𝑉
 

𝐾 = 𝑃1𝑉1 → 𝐾 = 10 × 105 × 0.03 = 42000𝐽 

𝑤𝑖𝑡ℎ 𝑣1 = 0.03 𝑚3        →  𝑣2 = 0.06 𝑚3 

𝑊 = −𝐾 ∫
𝑑𝑣

𝑉

𝑣2

𝑣1

= −𝐾𝑙𝑛
𝑉2

𝑉1
 

∴ 𝑊 = −42000𝑙𝑛2 = 29112𝐽 

The final pressure is 𝑃2 =
𝐾

𝑉2
 =  

42000

0.06
= 700000 𝑃𝑎 𝑜𝑟 7 𝑏𝑎𝑟 

In the second case the external forece was reduced to half ∴ 𝑃 = 7 𝑏𝑎𝑟 

𝑊 =  −(7 × 105)(0.06 − 0.03) =  −21000𝐽 

The process is clearly is irreversible, and compared with the reversible process 

is said to have an efficiency of: 

21000

29112
= 0.721   𝑜𝑟     72.1% 
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Enthalpy 

Enthalpy appears in energy balances for flow processes as applied to heat 

exchangers, evaporators, distillation columns, pumps, compressors, turbines, 

engines, etc., for calculation of heat and work. 

The tabulation of values of Q and W for the infinite array of possible processes 

is impossible. The intensive state functions, however, such as specific volume, 

specific internal energy, and specific enthalpy, are intrinsic properties of matter. 

Once determined, their values can be tabulated as functions of temperature and 

pressure for each phase of a particular substance for future use in the calculation 

of Q and W for any process involving that substance. Enthalpy equation can be 

write as  

 

All terms of Eq. (1) must be expressed in the same units. The product P V has 

units of energy per mole or per unit mass, as does U; therefore H also has units 

of energy per mole or per unit mass. In the SI system the basic unit of pressure 

is the pascal or N m-2 and, for molar volume, m3 mol-1. The PV product then has 

the units N m mol-1 or J mol-l. In the metric engineering system a common unit 

for the P V product is the m kgf kg-', which arises when pressure is in kg m-2 

with volume in m3 kg-1. This result is usually converted to kcal kg-1 through 

division by 426.935 for use in Eq. (1), because the common metric engineering 

unit for U and H is the kcal kg-1. 

Since U, P, and V are all state functions, H as defined by Eq. (1) is also a state 

function. Like U and V, H is an intensive property of the system. The 

differential form of Eq. (1) is: 

𝑑𝐻 = 𝑑𝑈 + 𝑑(𝑃𝑉) (2) 

 

This equation applies whenever a differential change occurs in the system. 

Upon integration, it becomes an equation for a finite change in the system: 

∆𝐻 = ∆𝑈 + ∆(𝑃𝑉) (3) 

 

Equations (1), (2), and (3) apply to a unit mass of substance or to a mole. 

𝐻 = 𝑈 + 𝑃𝑉 (1) 
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Example 

Calculate ∆𝑈 𝑎𝑛𝑑 ∆𝐻 for 1 kg of water when vaporized at the constant 

tempreture of 373.15K (100 oC)and the constant pressure of 101.325 Pa. the 

specific volume of liquid or vapor water at these conditions are 0.00104 and 

1.673 m3 kg-1. For this change, heat in the amount of 2256.9 kJ is added to the 

water. 

Solution 

𝑈 = 𝑄 + 𝑤 

𝑑𝑈 = 𝑑𝑄 + 𝑑𝑤 

𝑑𝑤 = −𝑑𝑃𝑉 

𝑑𝑈 = 𝑑𝑄 − 𝑑𝑃𝑉 

𝑑𝐻 = 𝑑𝑈 + 𝑑𝑃𝑉 

𝑑𝐻 = 𝑑𝑄 

∴ ∆𝐻 = ∆𝑄 = 2256.9 𝐾𝐽 

∆𝑈 = ∆𝐻 − ∆(𝑃𝑉) 

= ∆𝐻 − 𝑃∆𝑉 

𝑃∆𝑉 = 101.33 × (1.673 − 0.00104) 

= 169.4 𝑘𝑃𝑎 𝑚3 = 169.4 𝑘𝑁𝑚−2𝑚3 

= 169.4 𝑘𝐽 

Then                ∆𝑈 = 2256.9 − 169.4  = 2087.5 𝑘𝐽 
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Heat Capacity  

Heat is often viewed in relation to its effect on the object to which or from 

which it is transferred. This is the origin of the idea that a body has a capacity 

for heat. The smaller the temperature change in a body caused by the transfer of 

a given quantity of heat, the greater its capacity. Indeed, a heat capacity might 

be defined: 

𝐶 =  
𝑑𝑄

𝑑𝑇
 

The difficulty with this is that it makes C, like Q, a process-dependent quantity 

rather than a state function. However, it does suggest the possibility that more 

than one useful heat capacity might be defined. In fact two heat capacities are in 

common use for homogeneous fluids; although their names belie the fact, both 

are state functions, defined unambiguously in relation to other state functions. 

Heat Capacity at Constant Volume 

The constant-volume heat capacity is defined as: 

                                             

 

 

 

This definition accommodates both the molar heat capacity and the specific heat 

capacity (usually called specific heat), depending on whether 𝑈 is the molar or 

specific internal energy. Although this definition makes no reference to any 

process, it relates in an especially simple way to a constant-volume process in a 

closed system, for which Eq. (1) may be written: 

 

 

Integration yields: 

𝑑𝑈 = ∫ 𝐶𝑉
𝑇2

𝑇1
𝑑𝑇      (const V) 3 

The combination of this result with [𝑸 =  𝒏 ∆𝑼  (𝒄𝒐𝒏𝒔𝒕 𝑽)] for a mechanically 

reversible, constant-volume process gives: 

 

𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
 

1 

𝑑𝑈 =  𝐶𝑣𝑑𝑇              ( const V) 2 



Third Class Thermodynamics Dr. Khalid Omran 

 

       If the volume varies during the process but returns at the end of the process 

to its initial value, the process cannot rightly be called one of constant volume, 

even though V2 = Vl and ∆V = 0. However, changes in state functions or 

properties are independent of path, and are the same for all processes which 

result in the same change of state. Property changes are therefore calculated 

from the equations for a truly constant-volume process leading from the same 

initial to the same final conditions. For such processes Eq. (3) gives ∆𝑈 =

∫ 𝐶𝑣𝑑𝑇  , because U, Cv, and T are all state functions or properties. On the 

other hand, Q does depend on path, and Eq. (4) is a valid expression for Q only 

for a constant-volume process. For the same reason, W is in general zero only 

for a truly constant-volume process. This discussion illustrates the reason for the 

careful distinction between state functions and heat and work. The principle that 

state functions are independent of the process is an important and useful 

concept. 

For the calculation of property changes, an actual process may be replaced by 

any other process which accomplishes the same change in state. 

Such an alternative process may be selected, for example, because of its 

simplicity. 

Heat Capacity at Constant Pressure 

The constant-pressure heat capacity is defined as: 

𝐶𝑃 = (
𝜕𝐻

𝜕𝑇
)

𝑃
 

5 

Again, the definition accommodates both molar and specific heat capacities, 

depending on whether H is the molar or specific enthalpy. This heat capacity 

relates in an especially simple way to a constant-pressure, closed-system 

process, for which Eq. (5) is equally well written: 

𝑑𝐻 = 𝐶𝑃𝑑𝑇                     (const P) 6 

Whence 

∆𝐻 = ∫ 𝐶𝑃𝑑𝑇
𝑇2

𝑇1
             (const P) 7 

𝑄 = 𝑛∆𝑈 = 𝑛 ∫ 𝐶𝑉
𝑇2

𝑇1
𝑑𝑇                (const V) 4 
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For a mechanically reversible, constant-pressure process, this result may be 

combined with 𝑄 =  𝑛 𝐴𝐻 (𝑐𝑜𝑛𝑠𝑡 𝑃) to give 

Q =  n AH =  n ∫ CpdT
T2

T1

                     (const P ) 
8 

 

Since 𝐻,  𝐶𝑝, 𝑎𝑛𝑑 𝑇 are all state functions, Eq. (7) applies to any process for 

which 𝑃2 = 𝑃𝐼 whether or not it is actually carried out at constant pressure. 

However, only for the mechanically reversible, constant-pressure process can 

heat and work be calculated by the equations  𝑄 = 𝑛∆𝐻 , 𝑄 =

𝑛 ∫ 𝐶𝑃 𝑑𝑇, 𝑎𝑛𝑑 𝑊 =  −𝑃𝑛∆𝑉 

 

Example 

Air at 1 bar and 298.15 K (25oC) is compressed to 5 bar and 298.15 K (25oC) 

by two different mechanically reversible prossece: 

a) Cooling at constant pressure followed by heating at constant volume. 

b) Heating at constant volume followed by cooling at constant pressure. 

Calculate the heat and work requirement and ∆𝑈 𝑎𝑛𝑑 ∆𝐻 of the air of each 

path. 

The following heat capacity for air may be assumed independent of tempreture: 

𝐶𝑣 = 20.78            𝑎𝑛𝑑                𝐶𝑃29.10 𝐽 𝑚𝑜𝑙−1𝐾−1 

Assume also for air that PV/T is constant, regardless of the changes it 

undergoes. At 298.15 K (25oC) and 1 bar for molar valume of air is 0.02479 m3 

mol-1. 

Solution 

𝑉2 = 𝑉1

𝑃1

𝑃2
= 0.02479 (

1

5
) = 0.004958 𝑚3 

a) During the first step the air is cooled at the constant pressure of 1 bar 

until the final valume of 0.004958 m3 is reached. the temperature of the 

air at the end of the cooling step is  

𝑇2 = 𝑇1

𝑉2

𝑉1
= 298.15 (

0.004958

0.02479
) = 59.63 𝐾 
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𝑄 = ∆𝐻 = 𝐶𝑃∆𝑇 = (29.10)(59.63 − 298.15) = −6941𝐽 

 

∆𝑈 = ∆𝐻 − ∆(𝑃𝑉) = ∆𝐻 − 𝑃∆𝑉 

= −6941 − (1 × 105)(0.004958 − 0.02479) = −4958𝐽 

During the second step the valume held constant at 𝑉2 while the air is heated to 

its final state  

∆𝑈 = 𝑄 = 𝐶𝑉∆𝑇 = (20.78)(298.18 − 59.63) = 4958𝐽 

𝑄𝑡𝑜𝑡𝑎𝑙 = −6941 + 4958 = −1983𝐽 

∆𝑈 = −4958 + 4958 = 0 

From first law ∆𝑈 = 𝑄 + 𝑊 

0 = −1983 + 𝑊 

𝑊 = 1983𝐽 

∆𝐻 = ∆𝑈 + ∆(𝑃𝑉) also entire the process, but 𝑇2 = 𝑇1, and therefore, 𝑃1𝑉1 =

𝑃2𝑉2, Hence ∆(𝑃𝑉) = 0 and 

∆𝐻 = ∆𝑈 = 0 

b) Two different steps are used in this case to reach the same final state of 

the air. In the first step the air is heated at constant valume equil to its 

intial value until the final pressure of 5 bar is reached. The air tempreture 

at the end of this step is: 

𝑇2 = 𝑇1

𝑃2

𝑃1
= 298.15 (

5

1
) = 1490.75 𝐾 

For this step the volume is constant, and  

𝑄 = ∆𝑈 = 𝐶𝑉∆𝑇 = (20.78)(1490.75 − 298.15) = 24788𝐽 

During the second step the air is cooled at constant pressure of 5 bar to its final 

state: 

𝑄 = ∆𝐻 = 𝐶𝑃∆𝑇 = (29.10)(298.15 − 1490.75) = −34703𝐽 
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Also 

∆𝑈 = ∆𝐻 − ∆(𝑃𝑉) = ∆𝐻 − 𝑃∆𝑉 

∆𝑈 = −34703 − (5 × 105)(0.004958 − 0.02479) = −24788𝐽 

For the two steps combined, 

𝑄 = 24788 − 34703 = −9915𝐽 

∆𝑈 = 24788 − 24788 = 0 

𝑄 = ∆𝐻 − 𝑊 = 0 − (−9915) = 9915𝐽 

As before                                 ∆𝐻 = ∆𝑈 = 0 


