

The Application of Nanotechnology in the Field of Renewable energy (Hydrogen and Fuel Cells)

Dr. Haleemah J. Mohammed Ministry of Science and Technology

Hydrogen Production Processes:

- -1-Thermal Processes
- -Gasification
- Renewable Liquid
- Natural Gas Reforming

2- Photolytic Processes

Uses light energy to split water into hydrogen and oxygen offer the possibility of hydrogen production which is cost effective and has a low environmental impact

Photocatalysis

- Photocatalysis is defined as the chemical reaction induced by photoirradiation in the presence of a catalyst, or more specifically, a photocatalyst. Such material will facilitate chemical reactions without being consumed or transformed.
- Photocatalysts can be divided into <u>homogeneous</u> photocatalysts (photocatalyst in the same phase with the reactant materials like liquid with liquid or gas with gas) and <u>heterogeneous</u> photocatalysts (photocatalyst in more than one phase like liquid with gas) . first stape in improving new photocatalyst with high efficiency

3-Electrolytic Processes

- <u>Electrolytic processes use an electric current to split water into</u>
 <u>hydrogen and oxygen</u>
- The electricity required can be generated by using renewable energy technologies such as wind, solar, geothermal and hydroelectric power

4-Biomass

Hydrogen Production

Bio-hydrogen (Green algae)

High-Temperature water splitting

Barry D. Bruce

Oak Ridge National Laboratory University of Tennessee

Electrolysis with renewable energy

Wyoming

Fuel Cells

A fuel cell consists of two electrodes—a negative electrode (or anode) and a positive electrode (or cathode)—sandwiched around an electrolyte. Hydrogen is fed to the anode, and oxygen is fed to the cathode. Activated by a catalyst, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons migrate through the electrolyte to the cathode, where they reunite with oxygen and the electrons to produce water and heat

Fuel cells operation

- Example: PEMFC•
- The hydrogen atom's electron and proton are separated at the anode.
- Only the protons can go through the membrane (thus, the name proton
 - exchange membrane fuel cell).

Types of Fuel Cell

- .Proton Exchange Membrane Fuel Cells (PEMFCs)
- 2- An .Alkaline Fuel Cells (AFCs)
- 3- Phosphoric Acid Fuel Cells (PAFCs)
- 4- Molten Carbonate Fuel Cells (MCFCs)
- 5. Solid Oxide Fuel Cells (SOFCs)

Hydrogen storage materials

High H-mass density High H-volume density Appropriate p,T stability Reversible absorption/desorption

> metal hydrides carbon based materials micorporous materials

Metal hydride forming elements "Rule of 2 Å" for H-H separation

High pressure gas cylinders (up to 800bar)

Liquid hydrogen in cryogenic tanks(at 21 K)

Fig. Liquid hydrogen tank for a hydrogen car

Fig. gas cylinders Science and Technology Seminars in Tokyo March 27th 2001

Nanostructured Materials

Nano materials are nano chemicals that are used with high quality in many applications. They contain many physical and chemical properties

- Preparation Methods of Nano material
- 1- :physical methods
- 2- chemical methods
- 3- mechanical methods
- 4- Electrochemical method
- 5- Laser ablation method
- 6- sputterings

Nanostructured Materials

- Foundry processes / fabrication techniques enabling mass production of nanoparticles
- Broad range of functionality

CATALYST CHARACTERIZATION

- Bulk Physical Properties
- Bulk Chemical Properties
- Surface Chemical Properties
- Surface Physical Properties
- Catalytic Performance

The Application of Nanotechnology

• 1-Electrolytic Processes

Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction

Subtask A

Microbial electrolysis cell (MEC)

Nano Photocatalysis

انجازات : شعبة الهيدروجين: دائرة الطاقات المتجددة : وزاره العلوم والتكنولوجيا

- . تم انجاز عدد من براءات الاختراع في هذا المجال
- تم نشر العديد من البحوث في مجلات المستوعبات اسكوباس والدوليه
- الحصول على عدد من الدروع والشهادات التقديريه
 المشاركة في المؤتمرات والمعارض الدولية

